ﬁ

Spring

The Spring Framework - Reference Documentation

Version 2.5.6

Copyright © 2004-2008 Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu,
Rob Harrop, Thomas Risberg, Darren Davison, Dmitriy Kopylenko, Mark Pollack, Thierry
Templier, Erwin Vervaet, Portia Tung, Ben Hale, Adrian Colyer, John Lewis, Costin Leau,

Mark Fisher, Sam Brannen, Ramnivas Laddad, Arjen Poutsma

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

IR g4 oo (U T o o O PPPRPPPPRPN 16
0 L= Y= PSR 16
L2, USAQESCENGITOS ...coeeeeiiiiiieeee e e e e e ettt e e e e e e e sttt et e e e e e e e ee bbb e e e e eaeeeessasntsaeeeeaeessaanassaaneeeaaeesans 18

2.What'snewin SPring2.0aNnd 2.57oooeiiiiiiiiie e 21
P28 I 1 L1 0o (1 o o) o PRSP 21
2.2. Thelnversion of Control (10C) CONEAINETc.uvieiiiieeeeeiiiiee e e st e et e e e e nieneeeen 21

2. 2. 1. NEWDEANSCOPESceeeeeeeei ittt e e e e e e ettt e e e e e e e et b ee e e e e aeeesaanntseeeeaaeeseaannsnneeeeeaaeeaans 21
2.2.2.Easier XML CONfIQUIALION.......uueiiiieee ittt e e e e s et e e e e e e e 22
2.2.3. EXtensibl XML GUENOTTNGceveiiiiie et 22
2.2.4.Annotation-drivenconfiguration..............cceeeiiiiiiiiiiir e e 22
2.2.5. Autodetectingcomponentsintheclasspath ... 22
2.3. Aspect Oriented ProgramminNg(AOP)ocoviiiiiiiiiieeeeeee e 23
2.3.1.Easier AOPXML CONFIQUIBLION ...ceoiiviieieiitiiee ettt 23
2.3.2.SuppOrtfOr @A SPECIIASPECES ... eeeeeieeiee e et e e e e e e e e e e eneaeeeeeaens 23
2.3.3. Support for bean namepoiNtCUt ElEMENtcceviiiiiie e 23
2.3.4. Supportfor ASPect0ad-tiMEWEBVINGccoiiiriieiiiiie e 23
P2 o I 1= T o = I RSP SP 23
2.4.1. Easier configuration of declarativetransactionSin XMLccccoeviiiieeiniiiee e 23
2.4.2. Full WebSpheretransaction management SUPPOITuuueueueummrnmmennnnnnnnnnnnnnnnnnnnnnnnnnnnns 24
2A.3IPA oo e e e et e e e e e e e a——— e e e e aaeeearaaeaeaas 24
24 4. ASYNCAIONOUSIMS..... ..ottt et e e e e e e et e e e e e e e e e eeeaaaeeeeannnneees 24
2A5JIDBC ...t e e e e e b e s nbareeeaas 24
R I 0=V L o I = RS 25
2.5.1. SensibledefaultinginSPringMV C ... 25
2.5. 2. POrtIEtframMEWOIK ... et e e a e e 25
2.5.3.Annotation-basedControll€rS..........ceeeeee e 25
2.5.4. Aformtaglibrary for SpriNgMV C ...oeveeiiee e 25
2.5.5. THES2SUPPONT ...ttt ettt e e e e e e s e e e s s e e e e e nnrreeeens 25
2.5.6.JSF 1.2 SUPPION ...ttt et a et ranar 26
2.5. 7. JAX-WSSUPPIOI .ceeeeeeiiiiee et ee e e e sttt e e e e st e e e e s s r e e e e e s s e s b e e e e e e e e e s s annrnnes 26
2.6, EVENYININGEISE ... e e e e e e e aaaas 26
2.6.1.DYNamiClanguUageSUPPONTcouureeeiiieeeeeiiieeeeaaieeeeesibse e e s sber e e e s asnreeesssneeeesnnbeeeeeans 26
2.6.2. ENhancedteStiNngSUPPOITuuuuuuurururniirnnniunnnnnnnnnnnnnnnnrnnnsnsnnnrnrnnnennnnnnnnnnnnnnnnnnnnnnnnnne 26
B ST TN 1Y/ B o] o 1 26
2.6.4. Deploying aSpring application context aSJCA adapterccvevevriiiieeniiiiee e 27
2.6.5.TASKSCNEAUIING ...eiieeeiiiieee e e e e e e e e e e e st e e e e e e e e s ennnneees 27
2.6.6.JaVA5 (TIQEN) SUPPOIT ...c..eveeee ettt e e ettt e e et e ettt e et e e e e e s e e e e e e e e e e nnr e e e e ennees 27
2.7.MigralingtoSPriNg2.5.....ccov e 27
2.7 L.CNANGES. ... ee ettt ettt e b e e e b e e e e e e e e e e e e 28
2.8.Updatedsampl€appliCatioNS..........uuuuureiiiiiiiiiiie e aeaaaenrnrasesnsanasannrarnnnnnnnrnrnnes 30
2.9.1MpProveddOCUMENTALIONeiiiiee e e s e e e e e e e e e e e e e e s s st r e e e e e e e s s annrrreeeeaeas 30

|.COrETECNNOIOTIES.ttt e e et e e ek e e e e e nb e e e e s e e e e e e e nnr e e e e e nnes 31

T I =] o[@ oo g - T o = PRSPPI 32
10 350 I8 1 11 0o 1o o U SUPRSRR 32
3.2.BasiCs- containersandbeansueiiiiiiiii s 32

G0t T I = Tot 0 1 = 11 = RSO PRSRRR 33
3.2.2.INStantiatingacCoNtai NENcceeiiieiiee et e e e e e e e e e e e e e e s eneeees 34
2.3 TNEDEANSeeiiiiiiie et e e 35
3.2.4.USINGTNECONTAINEYieieeeeeite ettt e e es 39
3.3. L. INJeCtingAEPENTENCIES......cueeeeee ettt 40

Spring Framework (2.5.6)

The Spring Framework - Reference Documentation

3.3.2. Dependenciesand configurationindetailccccooviiiiiiiniiiieeiiieec e 45
G TG 0 g o o F=Y L= o T LT o o PP 54
3.3.4.Lazily-INStantialedDEANS.ceeiiiiiiee it 54
3.3.5. AUtOWIrNGCOHADOIEIOISuuuuieeiiniiiiiii e raraenrararnrnnnennnnnnes 55
3.3.6.Checkingfor dependenCiES.oouiiiie et 57
IO C I A1 1= 1 oo | =" 1) o USRI 58
T 1S 0] - 61
4. 1. TheSINGIEIONSCOPE ...ttt e e et e e as 62
3.4.2. TNEPIOLOLYPESCOPE .vvveiieeeeiieiiiiieree e e e e e e ettt e e e e e e e e s st bbb e e e e e e e e s s e satrreeereeeeessananeeens 63
3.4.3. Singleton beanswith prototype-beandependencies ..., 64
34.4. ThEOthEr SCOPES. .. oo i 64
4. 5. CUSIOMSCOPES ...ceteeeeiiiiititet et e e e e e ettt e e e e e e s e bbb et e e e e e s e st b b e et e e e e e aaansbbrreeeaaeeanans 68
3.5. Customizingthenatureof aDEANooo i 70
3.5.1.LifecyclecallDacks..........ccuuviiiiiiie 70
3.5. 2. KNOWINGWRNOYOUBIEcoiiiieeiiiiiee ettt ettt e e e s anen e e 74
3.6.BeandefinitioniNheritanCeoooiiieiie s 76
3.7.CoNtaiNEr EXTENSIONPOINTSci..eeeieeiiteee e ettt ettt a b e e e e e e e e s anbnn e e e e nnnreeas 77
3.7.1. CustomizingbeansSuSiNgBeanPoSt Pr 0CESSOr S wuvvrrrrrrrrrrrrererereeereeerereeerereereereeeeeens 78
3.7.2. Customizing configuration metadatawith BeanFact or yPost Processors 80
3.7.3. Customizinginstantiation|0giCUSINGFact 0F YBEANScccorvrrreerireeeessiineeeessnneees 83
3.8. THEADPPI | CALT ONCONE EXT wevvrvunniiieeiiieritieseeeeeseeeeabi e e eesseeeesra s eesseseestrbaeeeesseeeserannans 84
3.8.1.BeanFact or y Or Appl i cat i ONCONt Xt 2.ciiiveuiiuiiiieeeeeeiiiiies e e e e e e e eetate e e e e e e eeeanenaaes 84
3.8.2.Internationali zatiONUSINGMES SAGESOUN CES .vvrrrrrireeriiiiiurirereeeeeesiiiisrreeeeeeeessannenens 85
BB S IS L. nnnnas 88
3.8.4. Convenient accessto | OW-1eVel FESOUICESeeiiiieei i 89
3.8.5. Convenient Appl i cat i onCont ext instantiationforwebapplications....................... 20
3.9. Gluecodeandthe Vil SINGIEIONoviiiiiieiee e 91
3.10. Deploying aSpring ApplicationContext asaJ2EE RARTIlEooooeeiiiiiciiiieiii, 91
3.11. Annotation-basedCONfIQUIBLION.coiiiiieiiii et 92
G 200 I I 22 =Y T T =1 93
T N NG YT 1 I =1 I PP 93
3.11.3. Fine-tuning annotation-based autowiringwithqualifiers 95
3.11.4.Cust OMAUL OWI T ECONT i QU B wuuveiieriieeiiriieeeertieeeesaieseesaseeresssesessasesrsrnresessans 99
BT B TG 2 Yo YU o= T, 100
3.11.6.@ 05t Const r UCt ANA@Pr €DESE T OV ..ieeeiieeriiieeeeeeeeeeeeite e e e e e s e e eeab s e e e s e e eeeaaaaaes 101
3.12. Classpath scanning for managed COMPONENLScceorurrieriiiriee e e sieeee s e 102
3.12.1. @onponent andfurther stereotypeannotationsccccoeeeee . 102
3.12.2. AUtO-deteCtiNngCOMPONENTSvvieiiitiie et e sttt e e e 102
3.12.3. Usingfiltersto CUStOMIZESCANNINGcooiiieiiieieie e e e e e e 103
3.12.4. NamingautodeteCted COMPONENES...........cuvviiieiiee e s e e e 104
3.12.5. Providing ascopefor autodetected COMPONENESccoivereeerinieeeniiiieeeenineeeenns 105
3.12.6. Providingqualifier metadatawithannotationscccccceeveeiiiiiiiiieeee e, 105
3.13.ReQiStEriNGAL0AATi MBVMBAVET ...eiiiiirreeeeiirreeeaaisreeesasteeeesanbneeeeasnseeeeanbeeeesansnneeeannnneeas 106
AR ESOUI GBS ... e e e e oo e e s e as 107
g T g1 0o 1o o PSPPI 107
4.2. THhEeResOUr CEINTEITACE ... ciii it e e e e e e e eeaens 107
4.3.Built-inResour ce IMPIEMENLALIONSccoiiiiiiieiiiee e 108
. 3.0 | RESOUN 8 truuneiiitunieeeitieeeettt e e e ettt e e s eateeeeata e e e e st e esesann e sesannaesetanaaesetanaaserannns 108
4.3.2.00 ASSPAt NRESOUN CE ..eiivruuieeiiitieeetteeesettaeesett e eeett s eeeeranaesetnaesetaaeeeetanaeererannns 108
A.3.3.Fi | ©SY St EITRESOUI CE eevrrrruiieeerererrtutiseeeeseeeretunaseeeeeeeestanaaaeeeereastnnaaaeeeeeeeesnnnnns 109
4.3.4.Ser VI €1 CONt @XE RESOUI CO.urirrunieeeitieeeeitteeeeettaeeeettaeeseraeesetaaeesstaeareraaeererannns 109
4.3.5.1 NPUL St T @AMRESOUI C vuvurunieeeeeietititieeeeeeeeertttaaaeeeeseeeestaa s aeeesereastrnaeeeeeeeeesrnnnns 109

Spring Framework (2.5.6)

The Spring Framework - Reference Documentation

N N = YA =Y Y 1Y =Yoo TV o oY 109

4.4, TNERES OUI CELOAUET .uvvvurururursrrrurssnssrssnsnnns 109
4.5. TheResour ceLoader AWAr @ INMTEITACEcooeiiiieiiee e 110
4.6.Resour ces 8SAEPENAENCIES..........cooo e i e 111
4.7. ApplicationcontextsandResour ce PAINSeeeiiiiiiii i 111
4.7.1.ConstructingappliCatioNCONEEXESoeieiiiiieiee e 111
4.7.2. Wildcardsin application context constructor resourcepathsccccceevvecvvvvenennn. 112
4.7.3.Fi | eSyst eMReSOUr CECAVEALSceuuruuieieeeeieiittiias s e e eeeeeaatnasseeeeeeeaetnnaeeeeaaeenenns 114
5.Validation, Data-binding, theBeanw apper ,and Propert yEdi t 0r'Scccovevciviveeeeeeeesieiiniveeeeenn. 116
o300 I 1 1o [o o) SRS 116
5.2.Validationusing Spring'sval i dat or INEEITACEe.........ccceiiiiiiiiiiii e 116
5.3. Res0IViNg COUESTO EITON MESSATESeveeeiiurreeeeiirieeeaaiieieeasbeeeeessbreee s s ssbeeeessbeeeeesannneeas 118
5.4.Beanmanipulation andtheBeanW appereeeeeeeeiiiiciieiieeiee et e e e e e e e e aae e 118
5.4.1. Setting and getting basic and nested Propertiescccoeccvvveeeiee e iciciiieiee e 118
5.4.2.Built-inProperty Editorimplementations..............oooieeeiiiiieeeiieee e 120

6. Aspect Oriented ProgrammingWith SPringceoooiiiiiiiiieeiie e 126
200 I 1 1o [o o SR 126
L O N @ o0 0 o £ 126
6.1.2. Spring AOP capabilitiesandgoalSc.uvveeeiiee i 128

TR I AN @ o o) (=SSR 129

A (0N o= o LS U o] o 1 PR 129
6.2.1.Enabling @A SPECLISUPPONTceeiuieeeee et aiit ettt e e e 129
6.2.2. DEClariNg@ANASPECE.......cce it ee et a e et a s 130
6.2.3.DeClaringapOiNECULcoiurieeeiiieie et s e e e e n 130
A <o = T e =0 V7 o= 136
B.2.5.INErOTUCTIONS.eeieiiieii ettt e e e e e s nabeeeeeaae 142
6.2.6. ASPeCtinstantiatiONMOAES............ueiiiiiiii e 143
B.2. 7. EXAMPIE ... s aa e 143

6.3. SChemMa-DASEUA OPSUPPONTeeieiiieiee et e e et e et e et e e s r e e s s e e e s nnrneeenan 145
6.3.1. DEClariNgaANasPEC.......ccoi ittt e e aas 145
6.3.2.DeClaringapOiNECULcoiuriieeiiiiie ettt e e e e e 145
G TC B <o = T e =0 V7 o= 147
6.3 4. NEFOUCTIONS.eei ettt s et e e s e e e s nnbaeeeeaae 151
6.3.5. ASpectinstantiatiONMOCES.veiiiiiiiii e 152
B.3.6. A TVISOIS ...t iiteiee ettt ettt et e ettt e et e e e et e e e e e e nbe e e e e nnraeeeeaan 152
B.3. 7. EXAMPIE ... e 153

6.4. Choosingwhich AOPdeclaration styl€tOUSEccovvvviviiiiiiiieiiieieeeeeeeeeeeeeee e 154
6.4.1. SPring AOPOr TUIT ASPECEI? ..o 154
6.4.2. @AspectJor XML for SPrNGAOP? ...ttt 155

B.5. MiXINQASPDECIIYPES. ...eeiieeeei ettt e e et e e e e e s e e e e e e s e st e e e e e e e s e aantarareeaaeeeeans 156
6.6.ProXYiNgMECNANISIMIS.eeiiiiiiie ettt e e r e e s e e e e b e e e e anrneeeean 156
6.6.1. UNderstandiNngA OPPIOXIESueiiieeei i ittt ee e e e e e esettee e e e e e e e s st e e e e e e e s e snrrraeeeeeas 157

6.7. Programmatic creation of @A SPECLIPIOXIESvvvieiiiiiiee ettt 159
6.8. Using AspectIJwith SpringappliCationscccccciiiiiiiiiriiii e 159
6.8.1. Using AspectJto dependency inject domain objectswith Springcceeeeeecevvneeen. 159
6.8.2. Other Spring aspectSTOr ASPECE ..ot 162
6.8.3. Configuring AspectJaspectsusing SpringloCcccceveeeiiiiciiiieree e 163
6.8.4. Load-timeweaving with AspectJinthe Spring Frameworkccccoociveeeiiinnen. 163

B.9. FUINEIr RESOUITESiieeie ittt ettt e et e e e et e e s sbbe e e e e snsb e e e e e nnbaeeeeans 170
T SPIINGAOPAPIS ..ottt e e et e e e b e e e e e et e et e e s 171
80 1 L1 0o (1 o ' o S 171
7.2. POINTCUL APIINSPIING ..t eitiee ettt e ibe e e 171

Spring Framework (2.5.6)

The Spring Framework - Reference Documentation

T 2.1 CONCEPLS.eeeeieeeee e e ettt e e e r e e e e e e e e e e e e e e e e s e e e e an 171
7.2.2.0peratioNSONPOINTCULSuvvvieeieeeeiiiiiiiieeee e e e e e ssiir e e e e e e e s s santrre e e e e e e s s esnraraeeeaeas 172
7.2.3. ASPECLIEXPIESSI ONPOINTCULS ...ttt e e e e e e s e e e e e e e eas 172
7.2.4.Conveniencepoi NtCutimplemMeNtationSurururermininieiie—————. 172
7.2.5.POINTCULSUPEICIASSES ...ttt e 174
7.2.6.CUSIOMPOINTCULS. ... eeeeeee e e e e e ettt e e e e e e s ettt e e e e e e s s s nee e e eeaaeeeaaansnaneeneaaeeaaans 174

7.3. AQVICEAPIINSPIING .uuviiiiiiiie et e e e e e e e e e s st e e e e e e e s aanntrreeeeaens 174
7. 3. L AQVICEITECYCIES ...t 174
7.3.2. A0VICEIYPESINSPIING ..uvveeieee et e e e e e e e e s e e e e e e e e e e e e aans 175

T4 AQVISOT AP TNSPIING .ottt e e e e e 180
7.5. Using the ProxyFactoryBean to Create AOP PIOXIEScccvvvvvvieiiieiiiiieiieeeeeeeeeeeeeeeeeeeeeeeees 180
AT TS o= PSP POPPPRPPPPPPPRS 180
7.5.2.JaV8BEANPIOPEITIES. ... e e ettt e et e e e e e e e e e e e e e e e eeeaaeeaean 181
7.5.3.JDK-and CGLIB-baSEdPrOXI€Suvvieiieeeiiiciiiiieiee e e e eeccitree e e e e e s s e e e e e e e e 182
7.5.4. ProXYiNgiNTEITACES.ceiiiiiiie et 183
7.5, 5. PrOXYINGCIASSES ..o e e 184
7.5.6.USING'GIODEI A0VISOIScooiiiiiie e 185
7.6.CoNCISEProXY AEFINITIONSuuuuiiuiueiriiiiiirar s rarararnrernrannnnrnsnnnsnsnnnnnnns 185
7.7. Creating AOP proxiesprogrammatically withthe ProxyFactorycccccvvvveveee i, 186
7.8.ManipulatingaoViSEAODJECEScooiiiii e 187
7.9.Usingthe" autoproXy" faCilityccuuviiiie e e 188
7.9.1. AUtOProxXy DEANAEFINITIONSccoiuriiieiiiie et e e 188
7.9.2.Usingmetadata-drivenauto-ProXyingeeeeeeeeeeieciiiieeeeeeeeeisiiiineeeeeeeessessnsnneeeeeens 190

7. 10.USINGTAIGEESOUITESeeeiitiieeeiiieeeeeaitete e s et ee e s sttt e e e s s e e e s asbe e e e s anbne e e e s annbeeeeennsneeeeans 192
7.10.1. Hot swappabl etarget SOUICES.........ccovvviviiiiieiceeeeeeeeee et 192
7.10.2. P00l NGLArgEL SOUMCESevvieeeeiee e e e e ettt e e e e e s e e e e e e e e s s st e e e e e e s s e nntaraeeeaeas 193
7.10.3. ProtOtYPEargELSOUICESueeeiieeeeiiiiirrree e e e e e s s st e e e s e e e e e e ees 194
7.10.4.Thr eadLocal targEISOUMCEScveueiuiieeeeeieeeeiiis e s e e e e e e eeeira s s e e e e e e e aetaanneeeeeeeennes 194

7.11. DEfININGNEW AQVI CETYPES ..eiiiiiieieeiiitie e e ettt e sttt et e s e et e e s e e e e e 195
7. L2 FUMNEI TESOUICES. ...ttt e ettt e ettt e e e ettt e e e e e e e sttt e e e e sttt e e e e nbe e e e e annseeeeeennteaeeennraneeeans 195
S 1= A1 o PP PP OPPPPPUPPPRPNS 196
2300 I 1 L1 0o [o ' o U 196
S U L o] 1= 1 o RPN 196
8. 2. L. MOCKODJECES.ceeeiteee ettt 196
8.2.2.UNittestiNg SUPPOITCIBSSEScccviiiiiei e e e ettt e e e e s e e e e e e e e e eans 197

8.3 INLEGIALTIONTESLING ...eeiuveeeeeeiie ettt e e e et e e s st e e e e e b e e e e anrneeeeans 197
B3 LLOVEIVIBIW ...ttt ettt e e e et e e e ettt e e e st e e e e st e e e e e enbe e e e e nnraeeeeann 197
8.3.2.Whichsupport frameworktOUSEocueiiiiiiiiie e 198
8.3.3.COMMONGOBIS ...ceeieeee ittt e e e ettt e e e e e e s ettt e e e e e e e ettt e e e e e e e e e e annnrreeeeaaeeeaans 198
8.3.4.IDBCLEStINGSUPPON ...t ee e e e ettt e e e e e e e e e e e e e e e s s st e e e e e e e e s e entnraeeeaaas 200
8.3.5.C0MMONANNOLALIONSeuveiiieeee e it e e e e e e s s et e e e e e s e st e e eeeessssseeneeeaeaeeeaans 200
8.3.6.JUNIt3.81E0ACY SUPPOIeeeeeeeiieeiiiieie e e e e e e s eettre e e e e e e e et ee e e e e e e s seanrbreeeeeaeeeaanns 202
8.3.7.Spring TestConteXt FrameWOrKoociiiieiiiiie et 206
GRS I o = (O 1] T o= 7o) = 216
B.4.FUMNEIRESDUICEScce ittt e e e ettt e e e e e e et e e e e e s s et e e e e e e e s asssnraaeeaaaeessannnneees 218
Y Lo (o Lo Y= g - v Y oo S PRRRT 219
9. TranSaCtioNMANAGEMENTuuiiiieee i e ittt e e e e s s e e e e ae e e s s enb e e e eaeesssasntstarereaaeessannrrreeeeeens 220
S 00 I 1 1100 [o o o U 220
O.2.MOLIVALIONS ...eeeiiiiiee ettt ettt s e e e e e bbbt e e e e bt e e s enbe e e e e nba e e e e annbeeeeeansaeeeeans 220
0.3 KEYADSITBCLTIONS. ...ttt e e e s e e e e e nrn e e 222
9.4. ResourcesynchronizationwithtranSactionsccccvvvviviiiiiceeeeeeeeeeeee e, 224
0.4. 1. High-1evel GpProaChccuueiiiiiiiie e 224

Spring Framework (2.5.6)

The Spring Framework - Reference Documentation

9.4.2.LOW-1EVEIBPPIOBCH ..ot 225
9.4.3.Tr ansact i ONAWAT €Dt ASOUF CEPT OXY «.evvuueerurerrrneeeseerrrersneersniersreessaeesrnrerreersnns 225

9.5. DeclarativetransactionManageMENTuuviiiiiiiie et e e snbeee e 226
9.5.1. Understanding the Spring Framework's decl arativetransactionimplementation 227

0.5, 2. ATITSEEXAMPIE. ...t 227
9.5.3.ROIINGDACKceeiieeee et e e e e e e e e e 230
9.5.4. Configuring different transactional semanticsfor differentbeans............................ 232
9.5.5.<t x: @dVi €O/ >SEIINGS ..eoiiiieiee ittt 233
9.5.6.USINQG@IT ANSACE i ONAI .vvvvveiiieeeeiiiiiiieieeeeeeesssiitrreeeeeeessssntrteseeeeeesssssnrnreeaeaessaans 234
9.5.7. TranSaCti ONPIrOPAGELION.......ceeeiiiieee et e et ee e sttt e e e e e et e e e e e s anne e e e eaees 239
9.5.8. Advisingtransactional OPEratioNSuururururmrumurnrninnnrnnnnnnnrnrenrrra—————— 240
9.5.9.Using@r ansact i onal WItNASPECEcovuiiiiiiiiiiie e 243

9.6. Programmeati CtransactionmanagemeNtcoereeeiiiiiiieier e e e e e e eeiieee e e e e e s e eeeeieeeeeeeaeeeeaas 243
9.6.1.UsiNgtheTr ansact i oNTemPl @ @ ...cccciicuviiiiiieeeeeeicciiieee e e e e s e st e e e e e e e e sarrreeeeeeas 244
9.6.2.UsingtheP! at f or nTr anSact i ONMANAGET ...eeeiurrreeeriireeesiiireeesiieeeesenreeeeesneeeeeas 245

9.7. Choosing between programmatic and decl arativetransaction management 246
9.8.Applicationserver-speCifiCiNtegratioN............coieeieeiiiieee et 246
O0.8. L IBMWEDSPRENE ...ttt e e e e e e e e 247

0.8. 2. BEAWEDLOGIC. ...ccecii ittt e e s e e e e e e a e e e e 247
0.8.3.0rACIEOCATeeeeeeeeee ettt et a e e e e e e e nees 247

9.9. SOlutioNStOCOMMONPIODIEMSuiiiiiiie e e 247
9.9.1. Useof thewrong transaction manager for aspecific Dat aSour ceoccvveeerrernnen. 247

O.10. FUMNEIRESOUICES. ... et e eeiitiee e esiteee e e ettt e e e et e e sttt e e e et e e e e st e e e e annseeeeesnnteeeeennnaneeeans 248
OB TN @ 1= ¥] o] oo PP PP P PP PTOPPPPPRPPPT 249
0 80 T 1 0T 1 ' o U 249
10.2.Consistent eXCEPLiONNIEIArCNYcceeiiiiiie e 249
10.3. Consistent abstract classeSTor DAO SUPPOITcooivrieeiiiiiee et 250
11.DataaccesSUSINGIDBC ...t e e e s e e e e e e e e e e e e s 251
T g 0T 1 ' PR 251
I I I @ o To = g To = 1= L= PSSR 251
11.1.2. ThepaCkagehi€rarChyoooueiiiiiiiie e 252

11.2. Using the IDBC Core classesto control basic JDBC processing and error handling 252
2 e 1o Yo =1 o T = 252
11.2.2.NanedPar amet €r JADCTENP] @ € .oveeevererrriiiieeeeereeeetiiass e e e eeererer e e e e e e eeeeernn e eeeees 255
G RS o =N [Yo =T o L A= 257

L. 2.4.D81 AS0UI CO evvvrueeeiitiiee ettt e e e ettt e e e et et e e e et et e e e e st eeeea b e eeeataeeesetaaeerstanaeererannnns 258
11.2.5.SQLEXCEPt i ONTE ANST AL OF 1vvvniirnieieieeeneeeteeee e e e s e et e e eb e raaeeran e eebeeraneerans 259
11.2.6.EXECULINGSIAIEMENESeveieeiiiiiee ettt e e 260
11.2.7.RUNNINGQUENIES.coeee ettt e e e e e e e e e e e e e e e 260
11.2.8.Updatingthedatabaseeviieeiiiiiiiieiicee et 261
11.2.9. Retrievingauto-generatedeysS.couuviiiiiiiiieeiieie e 261
11.3.ControllingdatabaSeConNECLIONSueeeiiieiiiiiiiiiee e 262
11.3.0.D81 @SOUF CEUL i | S civvrruieiiiiiiieeeietieeee et e e ee et e e e e et e e e e et e e e e et e e e sebaeeesataeeererannnns 262
11.3.2.SIBI 1 DAL ASOUI CE tevvrruneeeittieeerieteeeseetseeeestaaeaeestaaeeeataaeeretaaeeestaaeseetnnaeerernnaes 262
11.3.3.ADSt r ACE DAL ASOUI CO tuuerrrruierietieeeereteeeeeesteeeeeetateeesetaeessstaeeeretaeesssrnaeererananns 262
11.3.4.Si ngl @CoNNECt i ONDAL ASOUI C@ eevuueriiriieeiiiieeeeetteeeeeetaeeeeetaeeeeetaaeeeetaeeaeerannnns 262
11.3.5.0r i VEr MANaAger Dat @S0UN CE ..uevrrrunieerereeeereraeeererseesretaeesrereesrsraeesserneessernees 262
11.3.6.Tr ansact i oNAWATr €Dat @SOUF CEPT OXY wuvvuuuiieeerererriniisseeererersnnnsaeeesseressnnnaaeeeeees 263
11.3.7.Dat aSour ceTr anSact i ONMANAGETuueeerniiernierrieerrtierereertieeeteerreerseereraeeraeeesns 263
11.3.8.NatiVEIADCEXIIACLONevvviieeeiiieiiiiiiiee e e e e ettt e e e e e e e s sreare e e e e e e s ennnnbeaeeeaaeeeeans 263

I B TS0 o ot g o o L= = 0] 1 264
11.4.1. BatchoperationswiththeJAbCTemMPlate.oveiiiiiiieiiie e 264

Spring Framework (2.5.6)

The Spring Framework - Reference Documentation

11.4.2. BatchoperationswiththeSimpleddbcTemplatecoccveeiiiiiii i 265

11.5. Simplifying JDBC operationswiththe Simpleddbc Classescoccvvvveeeie e icciiiieee, 266
11.5.1. Insertingdatausing SimpleJdbCINSart ... 266
11.5.2. Retrievingauto-generated keysusing Simpleddbclnsert............eieeninininnnnnnn. 266
11.5.3. Specifying thecolumnsto usefor aSimpleddbcinsertcccceevviiveeiiiiieeenien, 267
11.5.4. Using Sgl Parameter Sourceto provide parameter ValUEScoovvecciieeeereeeeenns 267
11.5.5. Callingastored procedureusing SimpleddbcCall ..., 268
11.5.6. Declaring parameterstouseforaSimpleddbcCall ..., 270
11.5.7. HowtodefineSOIParameters.........ccooei it 271
11.5.8. Cdllingastored functionusing SimpleddbcCall ... 271
11.5.9. Returning ResultSet/REF Cursor fromaSimpleddbcCallcccovvvvvvivevevenennnnn. 272

11.6. Modeling IDBC 0perationsasJaVaohjECLSccuveeeiiiireeeiiiiiee et 273
T RS To T I @ V=Y Y PO URPPROR 273
Y =Y oY o TI A To 1o N =T AP 273
TG B o U o - = 274
N T S oY =Yoo Yo=Y [V O =N 275
T o I 0T Yo T 278

11.7. Commonissueswith parameter and datavaluehandlingccccccoeieiiiiiiiiiciiiinnnnnnns 278
11.7.1. Providing SQL typeinformation for parameters............ccccvvvveveeeeeseciciiineeeeee e 278
11.7.2. HandlingBLOB and CLOB ODJECSccoiiiiiiieiiiieie e 278
11.7.3. Passinginlistsof valuesfor IN Clauseccovieiiiiiiiiiieiiee e 280
11.7.4. Handling complex typesfor stored procedurecallscccccoviiiiiiiniiiieeeniinenn. 280
12.Object Relational M apping (ORM) dataaCCeSS......cccceiviiiiiiiieiiee ettt e et e e e e 282
2250 T 1 0o 1 o ' o SRR 282
A o T o= 1 = = SR 283
12.2.1.RESOUrCEMAaNaJEIMENTeeiiiiiiiieeiii ettt ettt ettt ettt et e e e e e e e e e e e e eeeeeeeeeeeeeeeees 283
12.2.2. Sessi onFact or y SEtUPINASPIING CONMTAINETvvveeeiiiieeee e 284
12.2.3. ThEH DEr Nat ETENPI AL € covvieeerereeeieieeeieeetie e e e e e e e e e eeer e s e e e s e s eeeabb e e eesseesreraanaes 284
12.2.4. 1mplementing Spring-based DAOswithout callbacks ..., 286
12.2.5. Implementing DAOsbased onplain Hibernate3APIcoooiiiiiieeieeeeiien, 286
12.2.6. Programmati CtransactiondemarCationeeeirueeeeeinieiee e e e sieeee e 287
12.2.7.DeclarativetransactiondemarCationo.eioiceeeeeieee e 288
12.2.8. Transactionmanagement StralEgIESuvvrereeeee i ee e e e e e e e e e e e earraeeee e 289
12.2.9. Container resourcesversuS|OCal FESOUICEScuvvveiiireeeeieeciiieeee e e e e e eeeeieeeee s 291
12.2.10. Spuriousapplication server warningswhenusing Hibernatec.c.ccoeeeee. 292
2 05 1@ T PSPPSR 293
12.3.1.Per si st enceManager Fact or Y SEIUP ...ovveevrvenieieeereeeeiiiien s e e e e e e eeetnnn e e e e e e eeeneens 293
12.3.2.3doTenpl at @ ANAIAODAOSUDPPOT T wevvrrrrrerrrrrerrererererereeeeererererrrererererererererrrerereeeen: 294
12.3.3. Implementing DAOsbased ontheplain IDO APooiviiiiiiiiiiieeee e 294
12.3.4. TransactioNMaNageMENt..........cccuviriieeeee e e s e e e e e e e s s r e e e e e e e e e ereaaeeeaans 296
12.3.5.30A0D0 @l BCE 1eeiiitiieeeiiii et e e e e e e e et 297

A N @ = To =0 o] o I o PSR 297
12.4.1.Sessi onFact or yaDSraCtioNcoovvviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee et 298
12.4.2.TopLi nkTenpl at e ANATOPLI NKDAOSUPPOT T ..veeverunieeieraieereraeeereraseeeeeraseeseesaseeeees 298
12.4.3. Implementing DAOsbased onplain TOPLINK APoooiiiiiiiiiiiiieec e 300
12.4.4. TransactioNMaNagEMENT.........oii e ee e e e ettt e e e e e e e s et e e e e e e e s e asneeeeeeeaeaeeeen 301

125 iBATISSQLMEPSeeiieiiiiiiee et ettt sttt e et e e s sbb et e e s snbbe e e e ennbaeeeeans 302
12.5.1. SettingUPTNESYl MBPCH i €N ..vvvieiiiiiie et e ettt 302
12.5.2.Usingsql Mapd i ent Tenpl at e andSgl Mapd i ent DAOSUPPOTt ccuevvvvveereeeeesiennnnnn 303
12.5.3. Implementing DAOsbased onplainiBATISAPIooviiiiiiiiiiieeeee e 304
L2, 8. JPA et e e e e e e e e e e e —— et e e e nte e e e e e taee e e e nnneeeeanreaeeennnes 304
12.6.1. JPA setupinaSpring €NVIFONIMENTcooiurreeiiirieeeanireeeseiieee e sireeeesnnreeeeenees 305

Spring Framework (2.5.6) Vii

The Spring Framework - Reference Documentation

12.6.2.JpaTenpl at @ ANAIPADAOSUDPPOT T wevverrrrerrererererreereeererererererererererereeerrrererrrererereee 310
12.6.3. Implementing DAOsbasedonplaiNnJPAccvviiiie e 311
12.6.4. EXCEPtONTIANSIATON ...ttt 313
A W =01 o o 1LY == 1= 1= | 313
L12.8.IPADI Al BCL eeeiiieiiiiiie e e e e e e eeee e e e e e e e e e e e e e e e e e et e e e e e e ee et — e eeeeaeeeaataaaaaeenrrrns 314
I == o SRS 315
L3 WEDMV CTTAMEBIWOTKeieiiiiiie ettt e e et e e e st e e e s snbbe e e e e nnbneeeean 316
G 50 T 1 11 0o 1o ' o PR 316
13.1.1. Pluggability of other MV Cimplementations...........ccccceeeeeieiiciiiieeeee e 317
13.1.2. Featuresof SpringWeEDMV Cooiiiiiieiie e 317

13.2. THEDI SPAt ChEr SEI VI @1 ..ieieieiiiiieeeeeeeee et e e e e e e e et e e e e e e e e e e et e e e e e e e e e eesbabaeeeeeeeeeeees 318
GG H o 11 7] 1 = = SRR 322
13.3.1.Abstract Cont rol | er aNAWEbCont €Nt GENEr AL OF .uvuueeeeeeeeeeriiiieeeeeeeeeerrrieeeeeenan 323
13.3.2.0ther SIMPIECONLIOIEISvveeiie e 324
13.3.3.ThEMUI ti ACti ONCONE T Ol | I wuvvueeieieeeiieeriiieeeeeeeeee et ee e e e e e e e e e et e e e e e e e eeeraraanans 324
13.3.4.CommMEaNACONLIOIENS.eeiieiiiiie et e e 327

13. 4. HaNAI €I MEBPPINGSeeeeeiiteiee ettt e e et e et e e et e e et e e e e anbb e e e e e e e e e e nees 328
13.4.1.BeanNanmeUr | Handl €F MBPPI NG ceuuunieeiiiieeeeiiieee e et e e e eeteeeeeetn e e e eate e e e e et e eaeanannnns 328
13.4.2.Si npl @Ur | Handl €5 MBPPI N .evveriieeiiriieeeetieeeeeetieeesetaeeessetaeessetaeesssraeesserannns 329
13.4.3. Intercepting requests- theHand! er I nt er cept or interfacec.cccveeviiieeeenne. 330
13.5.ViewsandresolVINGNEM 331
13.5.1. Resolvingviews-theVi ewResol ver iNEITaCEccociiviiiiiiiieiee e 332
13.5.2.ChaiNiNgVIEWRESDIVEIS.......ccco ittt e e e e 333
13.5.3. REINECHINGLOVIEIWSoeiiiiiiie ittt e e e e 334
13.6.USINGIOCAIESccoeeeeeeeeeeee et 335
13.6.1.Accept Header LOCAl ERESOI VET cuvuiiiieriiieiiiiieeeeieteeeeeeteeeeeeb e e e seba e e e s et e e s sebananas 335
13.6.2.C00Ki €LOCAI BRESOI VET iiviuiiiiiiiieeeiiiie e e e e e e e ettt e e e et e e e et e e e e et e e e e et e e e e erannas 335
13.6.3.56551 0NLOCAI ERESOI VI civtuuiiiiiiiieeeeiiie e e et e e e et e e e e et e e e e et e e e e et e e e e et e e e eetan s 336
13.6.4.Local €Changel Nt €F CEPL OF .uuuuiiieeereeereiiiiieeeeeeeeeestnaasseeeeersasnnnaaeeeesererrrnnaaaeeaees 336
L13.7.USINGNEIMES ..ot e e e e e e e e e e e e s s st b e e e e e e e e e s e ntbreneeeeas 337
G 00 T [11 0o 1 T i o o USSR 337
13.7.2.DEfiNINGINEMEScooeieieeeeeeeee e 337
13.7.3. THEMEIESOIVEN'Seeiiiiieie et 337
13.8. Spring'smultipart (fileupl 0ad) SUPPOIToeeiiriiieiiiiie e 338
GRS 30 g (0o 1 o o PRSP 338
13.8.2.USINGINEMUI t i PAr t RESOI VET ..uiviiieiiiiiie e ettt 338
13.8.3. Handlingafileuploadinaformccccc i, 339

13.9. HaNAIINGEXCEPLIONS ...ttt et e et e et e e e e e e e nees 341
13.10.ConventionoVer CONFIQUIALTIONueeiiiiiee e e e e et e e e e e e ee e e e e e e e e enneees 342
13.10.1. TheController-Cont rol | er A assNameHandl er MBpPi NG «...ooevvvvvvvieeiieeeereeeeennnnn. 342
13.10.2. TheModel - Model Map (Model ANdVi W) ...ceuvveeeeiiiieieesiiieeeesiiieeeeesneeeeesieeee e 343
13.10.3. TheView-Request ToVi @WNAMBTF ANS| At OF ...veeeeiieveiriiieeeereeereieeeeeeeseeeeenannns 344
13.11. Annotation-based controller CONfiQUIatioN.............cuueeieiiiiiie e 345
13.11.1. Setting up thedispatcher for annotation SUpPPOrtcooeeeeeeeiieie e, 346
13.11.2. Definingacontroller With @Cont 1 0l | €5ouveeeeiiiiiieeeiieee e 346
13.11.3. MappingrequestsSwith @Request MAPPI NG «.veeeeeeeeerireuiiieieeeaeeeeeeiiieeeeeeeeeseeeneeees 347
13.11.4. Supported handler method argumentsand returntypescccccvvveereeeeescecnnnnee, 349
13.11.5. Binding request parametersto method parameterswith @equest Par am.............. 350
13.11.6. Providing alink to datafrom the model with @bdel Attributeocccvvvveeeeeenn. 351
13.11.7. Specifying attributesto storein aSessionwith @essi onAt tri but esc........ 351
13.11.8.CustomizingwebDat aBi nder INitialiZalioNccevvvvivieieieeeiciceceeeeeeeeeeeeeeeeeeee 352
13,12, FUINEIRESOUICES. tvteeieee e e e ettt e e e e e ettt et e e e e s e st ba e e e aaeesssesstebeeeaaeeessenssraneeaaas 352

Spring Framework (2.5.6)

viii

The Spring Framework - Reference Documentation

LA VIBWEECHNOIOGIES ...t s e e e nees 354
I g (0o 1 (o o PSRRI 354
N S </ Y I P 354

L1421 VIBWIESOIVES ...ttt ettt e e e e e st e e e e e e s e st bbeeeeeaeeeeens 354
14.2.2."Plain-0ld' JSPSVEISUSISTLuvviiiiieeiiiiiiiiiieeee e e e s eeiitee e e e e e e e s snianee e e e e e e s ennnneees 354
14.2.3. Additional tagsfacilitatingdevel Opmentoooiiiiiiiieie e 355
14.2.4.Using Spring'sformtaglibrarycccoveeiieeiiiiiie e 355
I T 1= PSSR 363
14.3.1.DEPENAENCIES. ... e ceeieeee et e e e e e e e e s st e e e e e e e e s e s atrrraeeeaaeeaaan 363
14.3. 2. HOWLOINIEGIratE TIl Sceeiiiieie ettt 363
144 VElOCItY & FIEEMAIKENceeieieeeeeeeeeeeeeeeeeee ettt e e e e e e e e e e e e e e e e e eeeeeeereeeeeeereeeees 365
144 1. DEPENUENCIES. ...ttt ettt ettt e et e e et e e e st e e e et e e e s annb e e e e e nees 365
14.4.2.CONLEXLCONTIGUIBLIONeeiieeesiiiiiiiiie e e e e e e ettt e e e e e e e e e ee e e e e e e s e e eneneeeeeeaaeeeen 365
14.4.3.CreatingteMPIaLeSuuveiiie e e e e aa e e e 366
14.4.4. AdvanCedCONTIQUIELIONcocuurreeiiiieie ettt e e 366
14.4.5.Bindsupportandformhandling............ccceeeeeii i 367
3 I PSSP 372
T I Y Y 1 6 YA] (0 LS 373
T S W 0117 Y P 375
14.6.Document VIEWS(PDF/EXCE]) ..ottt 375
G0 B g (0o 1 o o SRR 375
14.6.2.CoNfiguratioNaNASEIUDeeeeeiieeeeeeiiieee et e e e e et e e e e e e e nnereeeaa 375
N = s o oo £ TSP 378
14.7. 1. DEPENUENCIES. ...ttt ettt e ettt e e et e e e et e e e s b e e e e e nnnes 378
X o o 8 = (o o [378
14.7.3. Popul atingtheModel ANAVi Wccoocuviiiiiiieee e sttt e e r e e e e e s earaaeeeeaeas 380
14.7. 4. WOrkingWith SUD-REPOITS ...t 381
14.7.5.Configuring EXPOrter Parameters..........ueeeieeeeiiiiiiiiieeeee e ccciiee e e e 382

15. Integratingwith other Web frameworksc..oooiiiiiii e 383
IS0 I g 10T 1 1 o o PRSPPI 383
15.2.COMMONCONTIQUIBIION ...ttt e s e e e e e e e e nees 383
15.3. JavaServer FaCeS1.1an0 1.2ccceeiieeiiiee e eiiiee e e et e e et e e e st e e e e enaeeeeens 385

15.3.1.DelegatingV ariableResolver (JSFL.L/1.2)ccoccviiieieie e 385
15.3.2.SpringBeanV ariabl eResoIVEr (JSFL.L/1.2)oveiiiiiiiee e 386
15.3.3.SpringBeanFacesEL ReSOIVEr (JSFL.2+)ocooiiiiiiieeeee e 386
15.3.4.FaceSCONLEXIULISeviiiieiie et e e e e reae e e e e e e e 386
15.4. APaCheSITULS L. X @NA2.X ..vvvvuirrrriiiieiiiuueinrenurnrannrnenrnrrrerraaerraeaanraaaraeannnnannnnnnaennnnnnnnnnnnns 386
15.4.1.ContextLOaderPIUGINcoiiiiiiiie et 387
15.4.2. ACtiONSUPPOITCIBSSESeevieeei it e e e ettt e e e e e e st e e e e e e e e e e eeeaaeeeen 389
L5 5. WEDWOIKZ2.X .ttt ettt et e e e et e e et e e e e e e e e e 389
T 1= 10 1= S VR 10 0 SRR 390
15.6.1.Injecting Spring-managedbeans ... 390
15, 7. FUMNEIRESOUICES.eiiiiiiie e ettt et e e e e e e e et r e e e e e s s snnteaeeeeeeeessnnssraeeeaeas 396

16.POrtlet MV CEIramMEWOI Keeiiiiieiiiieee et e e e e e e s e e reeeeeens 397

300 I g1 0o 1 o ' o PSSR 397
16.1.2. Controllers-TheCiNMV C ... e e e 398
16.1.2.VIiews-TheV iINMVC ...ttt 398
16.1.3.WED-SCOPEADEANS ...t 398

16.2. THEDI SPAt Cher POI t 1 @1 iiiiiieiiriiieseeeeiietetiie e s e e e s eeetebaeeseessessssbaba s eesseseessbbaanseasssssnsses 398

16.3. THEVI @WRENAET €5 SEI VI E1 iiivvviuiiieieeeieietiiee e s e e e e et eeat e e e e e e e eeees b s e eeeseseesbabanseeeeeeeenees 400

3 o 11 0] = = S USRRSTPRR” [0
16.4.1.Abstract Control | er andPort| et Cont ent GENEI At OFceeevvvvvriereeerererrriieeeeeenss 402

Spring Framework (2.5.6)

The Spring Framework - Reference Documentation

16.4.2.0ther SIMPIECONLIOIENSeeieieee e 403
16.4.3.ComMMENACONIIONEIS........eiieiiiiiee ettt e e e e nees 403
16.4.4.Port] et Wappi NGCONE F Ol | €F vuuveeeeeieeiiiiiiiiiieeeeeeeeeiiiin e e e eeeeeennnnnneeeeeeeeeennnnnnnnn . 404
SR o F=To 1o | = o) o] Lo 404
16.5.1.Port | et ModeHandl €r MBPPI NQ..uuieeeeiiieiiiiiiiieeeeeeeeeeiiiiiseeeeeeseesnninineeeeeeseesssnnnnnns . 40D
16.5.2.Par anet er Handl €r MBPPI NG .ceevvnieeriiiiiieeiiiieeeeeeiieeeeeeiieeeeeeieeeeenineeeseennneeeennnns . 40D
16.5.3.Por t | et ModePar anet er Handl €F MBPPI NG . .cvurevvrneernnereriieerieeeiiierenieeesneeesneeeennennn. 405
16.5.4. AddingHANA] €r 1 Nt €I CEPL OF Suvvrreiiuiiiieeiaiieiee et e e e st e e e st e e et e e e s e e e eeees 406
16.5.5.Handl er 1 nt er Cept 0r AAPL EF ..vvvuriiernieiiiieiiiieieiieeeiee e reeeereesereesseesrneesennnens. 400
16.5.6.Par anet er Mappi NGl Nt €r CEPL OF oevvvveiriiiieieeeeeeeeiiiiiieseeeeseeensinnnneeeeeeeesssnnnnneeeee . 407
16.6.ViewsandresolVingthem ..., 407
16.7.Multipart (fileupl0ad) SUPPOITc.ueeieiiiiiie e 407
16.7.2.UsingthePor t | et Mul ti part RESOl VEI ..eeiiiieiiiiiciiiiieieeeeeeeeeiiieeeeeee e e e e eenenaeeeeeens 408
16.7.2. Handling afileupload inaformcccoieiiii e 408
16.8. HaNAIINGEXCEPLIONScouiieeeeiteee ettt e e s e e e e e nnes 411
16.9. Annotation-basedcontroller configurationcccveveeeiiiiiiiiiieiee e 411
16.9.1. Setting up thedispatcher for annotati ON SUPPOITeevvveeiriiiiie e 411
16.9.2. Definingacontroller With @Cont r ol | €eeeeeeiieiieiieieiiiieennn.———. 412
16.9.3. Mapping requestswith @Request MBPPi NGvvvereeeeeiiciiiieeee e e e ceeiireee e e e e e e s 412
16.9.4. Supportedhandler methodargumMEeNtscceeveeiiiiieeeiiiiee e 413
16.9.5. Binding request parametersto method parameterswith @request Par am 415
16.9.6. Providing alink to datafromthemodel with @bdel Attribute .cooeeeeriiciviieeennnn.. 415
16.9.7. Specifying attributesto storein aSession with @essi onAttributescc.ee..... 416
16.9.8. CustomizingwebDat aBi nder iNItI@lIZaliON..........ooiuveieiiiiiiee e 416
16.10. PortletapplicationdeplOyMENteeveiiiiiiiiieieieeeeeeee e e e e ee e e e e e e e e e ererererereeerereeeees 417
Y g 1= o = 4 o o TP RUPRPPP” 4 £ <
17.Remotingand web ServiCESUSING SPIINGocuvvveeeiiiieee et 419
0 T 0o 1 (o o OO OPPPRPY” o L
17.2. EXpOSINGSErVIiCESUSINGRIMIcoiiiiiiiiiiiiiee et 420
17.2.1. ExportingtheserviceusingtheRm Ser vi CEEXPOrt € ...cccvvvieieeeeeiiiiiiinneeeeeeeeeeans 420
17.2.2.Linkingintheserviceat theClientccccooviiiiiiiie e 421
17.3. UsingHessian or Burlaptoremotely call servicesViaHTTPvvvviviiiiiiiiniiiiiinnnininnn. 421
17.3.1. Wiringupthebi spat cher Ser vl et for Hessianandco.ccccvvveeeeeeeeiiicnnnne, 421
17.3.2. Exposing your beansby usingtheHessi anSer vi CEEXPOrt €rcccveevvcvveeeeniuvnnns. 422
17.3.3.Linkingintheserviceontheclientcccoeeeeiii e, 422
17. 3.4 USINGBUITED ...ttt ettt 423
17.3.5. Applying HTTP basic authentication to a service exposed through Hessian or
104 = o PSP OUPPRT 423
17.4. Exposing serviceSUSINGHT TRPINVOKENSoooiiiiiiiiiiiieee et 423
17.4.1. EXposingtheserviCeOhjECtcooviiiiiiiieee e 424
17.4.2.Linkingintheserviceat theclient ..o 424
L7 5. WEDSEIVICES.cee ettt ettt e et e e e ab bt e e e e st e e e anbb e e e e nnne e e e e nees 425
17.5.1. Exposing servlet-based web servicesusing JAX-RPCoocviiiiiiiiieeiiiieee e 425
17.5.2. Accessingweb servicesusing JAX-RPC ... 426
17.5.3. Registering JAX-RPCBEaNMaPPINGSvvveiiiiiieeiiiiee sttt 427
17.5.4. Registeringyour ownJAX-RPCHaNdIercccuiviiiiiieeiiiieee e 428
17.5.5. Exposing servlet-basedweb servicesusing JAX-WSccovvveeiiiiiiiiinieeeee e, 428
17.5.6. Exporting standaloneweb servicesusing JAX-WS ... 429
17.5.7. Exporting web servicesusing the JAX-WSRI's Spring sUpportcccccoeeevvvneeen. 430
17.5.8. Accessingweb servicesUSINGJAX-WS ...t 430
17.5.9. EXposingWeb ServiCeSUSING X FITEuuuuuuiiiiiiiiiiiiiiiiiiinniinrnnnnnnnnnnnennnnnnnnnnnnnnnnnnes 431

Spring Framework (2.5.6)

The Spring Framework - Reference Documentation

17.6.1.Server-SideCONTIGUIELIONvveeeeiiiiee ettt e e 432
17.6.2.Client-Sideconfiguration............ccuviiiiiie e 433
17.7. Auto-detectionisnot implemented for remoteinterfacesvvvvvvieeeeiniieee e 434
17.8. Considerationswhen choosingateChnolOgyuuuveriiiieimiiiiiiiiiiieeeeanaees 434
18.EnterpriseJavaBeansS(EJB) INtEgralionc..eeeiiiiiiieiiiiiie ettt 435
IS 50 T g1 oo 1o ' o PP EERPSRPRY” 1 o)
18.2. ACCESSINGEIBS. ...t e e e 435
18.2.1.CONCEPLS. ...eeeeeieeeeiiiiri et e e e e st e e e e e s e e s s sn e r e e e e s nnnnnnree e e e e s s nnnn s SROD
18.2.2. ACCESSINGIOCAI SLSBSouviiiiiieeeiiciiiieiee et e e e 435
18.2.3. ACCESSINGIEMOLESLSBSoeiiiiiiiiie e 437
18.2.4. AccessingEJB 2.X SLSBSVErSUSEIB 3SLSBS.....cccvviieiiiiiie e 437
18.3. Using Spring'sEJB implementation SUPPOIt ClaSSeSvvvveiiiiiieiiiiiiee e 438
18.3. 1. EIB 2.XDASECIASSES ...oiieeeeiiieiiiiiie e ettt e e e 438
18.3.2.EIB 3iNjECtiONTNLEICEPLONuvviieieeiee et e et e e e e e e e e e aaneees 439
19.IM S(JAVAM ESSAGESEN VICE) ...t eiiieee ettt e ettt e et e e e ettt e e et e e e e e e et e e e e e e e e e ennnes 441
S 20 I g0 To 1 (o o T OPPRRRPPPPRP” 72 ¥ |
19.2.USINGSPIINGIMS ...ttt ettt e et e e st e e e e e 442
T T3 =Y oo B L= YRR - 72 12
19.2.2.CONMNECLIONSceeiiiiiiee ettt ee s s ssnneesssnnneeesnnnneeesennn s D2
19.2.3.Destinati ONMaNagEMENTveiieiiiiiee et 443
19.2.4.MessageLiStener CONAINEISc.occuriiiieee e e e e e et e e e e e e e e s s et rreeeeeeas 443
19.2.5. TranSaCtiONMEBNAGEMENTcouveiee ettt e e e e e s e e aees 444
19.3. SENUINGAMES SAGE .eeeeeeeiuiiirieeeee e e s e eiittre e e e e e e e e s s ettt e e e e eaeessaaatareeeeaaeesaasassrareeeaeesssansnrrens 445
19.3.1.USINGM ESSAGECONVEITEN'Sccouiieieeiiieee ettt eite e sttt e e e e e eeeen 446
19.3.2.Sessi onCal | back @ndPr oducer Cal | BACKeevvvvuiiiiieeeieeiiceee e 446
19.4. RECEIVINGAMESSAOE. ... uevvveeeeeeee s e ettt ee e e e e et s sttt aeeeaeeessasatareaeeaaeessassnraaeeeaeeessansnrnees 447
19.4.1.SyNChIrONOUSRECEDLION......ceeiiiiiiie ittt e e 447
19.4.2. AsynchronousReception- Message-DrivenPOJOScoccvvvveveeee e 447
19.4.3. TheSessi onAnar eMessageli st ener INEEITACE........covvviiiviiiiiiiiiiiiiiiiieeeeeeeeeee 448
19.4.4. TheMessageLi St @NEr ADAPL ©F .uuu.iiieeeiiierrriieieeeeieeesriaeseesseseeera e eeesseesseranaas 448
19.4.5. ProcessingmessageswithiNtranSaCtionseeeevieeeeiiiiieee s 450
19.5. Supportfor JCA MeSsageENAPOINES........uuuuririiiiiiiiiiiiiiriirrrrreeeaenenaaranaaaaa 450
19.6. IM SNaMESPECESUPIONT ..evvveeeeerereerreeeeeeereeeeeeereeeeereeereeeeereeeeeeerrrererrerrrrerrrrrererrrrrerer 452
P20 0 I L oo [0 (' o PP PRPPPRRRY” .o o
20.2. EXportingyour BEANSTOIM Xccoiiiiiieiiiie ettt 456
20.2.1. CreatiNganNMBEANSET VEIuuuuurururusunesnsnsnsnsnsnsnsssnnssnsnsnsssnsnsnsnsnsnsssnsnsnsnsnsnsnsnnnnns 457
20.2.2. ReuSiNgan €Xi StINGMBEANSET VT ..uuvrreeiiiiieeeesaiireeesaiieeeessneeeesssnsneesssnsnseeesannees 458
20.2.3.Lazy-initialiZEdMBEENSceeeiiiieieieieeeeeeeeeeeeeee e 458
20.2.4. Automaticregistrationof MBEANScoooviiiiiiiiec e 459
20.2.5.ControllingtheregistrationDENAVIONoviiiiiiiieiiiee e 459

20.3. Controllingthemanagementinterfaceof yourbeans ..o, 460
20.3.1. TheMBean! nf oAssenbl er INTEITACEuuuiuiiiii s 460
20.3.2.Usingsource-Level metadata............cccccuururuiuiiiiiiiiiiiineeennenennnennennnnnnes 460
20.3.3.USINGIDK 5.0 ANNOLALTIONScvveeiiiiiiee ettt 462
20.3.4.S0urce-Level MetadataTYPESceeeiiieieieeee e e e ettt e e e e e e e eenaeeeeeeas 464
20.3.5.TheAut odet ect Capabl eMBean! nf oAssenbl er INTEACE......ccovvivviiiiiviiiiiieeeeeiiiias 465
20.3.6. Defining management interfacesusing Javainterfacescccceevvieeeeiiiieeenns 466
20.3.7.UsingMet hodNanmeBasedMBean! nNf 0ASSEMBI €5veieeeeeriiiiiiieeeeeeesssiiiiinneeeeaeesnns 467
20.4. Controllingthetbj ect NameSTOr your DEaNSocuviiiiiiiiiiec e 467
20.4.1.Readingj ect NameSTrOMPr 0perti €S ..ucvvvvvviiiiieiiiiiiiiiiiiceeeceeeeeeeeeeeeee e 467
20.4.2.UsingtheMet adat aNam NGSE T AL €QY uvvvrrrrereeeeeiiiirrrrerreeeesssssnnnrrrereesssinnennereeees 468

Spring Framework (2.5.6)

Xi

The Spring Framework - Reference Documentation

20.4.3. The<cont ext : nhean- export/ >El@MENtcccciiiiiiiiii s 469
20.5.JSR-160CONNECLONSceeeeeieeiiiieees 469
20.5.1.SerVer-SIdECONNECIONSeviieee e e ieiiieiet e e e e e e s eitae e e e e e e s s st eaaeeeeeeesssnnssanrereaaeesaans 469
20.5.2.ClIeNt-SIdECONNECLOIS......ceiieiei ittt e ettt e e e e e e e e e e s s eebeeeeeeeaeeaens 470
20.5.3.IMX overBurlap/HESSIan/SOARPceeiiieiieie et 470
20.6. AccessiNgMBEANSVIAPIOXIESuueiiiiee e 471
20.7.NOUTICAIIONSeeeeeeiieiee ettt e s ssnne e s sineeeessnneeessnnneee e AT L
20.7.1. Registering Listenersfor NOtifiCatioNSoocvveeeiiiiiieeiiiieee e 471
20.7.2.PublishingNOtIfiCalIONS.........ccoiiiiiiiiiii e 474
20.8. FUINEIRESOUITES. ... e ittt e e e e e ettt e e e e e e e e e e aae e s s s sntabereaaaeesaasnsstaaeeaaaeessannnseees 475
1220 T [7 X SRRSO 477
P24 1 g 1 oo [0 Tox £ o o I PR SPRSRRRY” ¥ 4 4
P2 2 ©o o 111 1 oo [o TR A77
21.2.1.CoNNECLOr CONFIQUIBLIONceiieeiiiiiieiee e e e e e s s et e e e e e s et e e e e e e s s b rrr e e e e aeeeens A77
21.2.2.Connect i onFact ory CONfigUrationiNnSPriNgcvveeirivrieeriiieee e 478
21.2.3.ConfiguringCCI CONNECLIONScooiiiiiiiiiiie e et 478
21.2.4.UsiNgasingleCCl CONNECTIONceeeiiiiieeeieiieie et e et e et nireee e 479
21.3.Using Spring'SCCl aCCESSSUPPONTuuuuuuuuununnnnnnnnnnnnnnnnnnnnnnnnnnnnsnsnnnsnsnnnnnsnnnnnnnsnnnsnsnnnnns 479
21.3. 1. RECOMTCONVEISION ...eieiiiiieeeeittee e e ettt e e e sttt e e e sttt e e e e et e e s snbn e e e aebs e e e s nnnneeeeenees 480

A R 1= o i =Y 11 o O = 480
ARG R B YN @ L= U o o] 1 SR 482
21.3.4. Automati COUtPUL reCOrd gENENatioNcuuveeeiiireieeaiiiie e et e e 482

P2 TG 1SI0SR PPPPSSSPRY” .S 4
21.3.6.UsingaCCl connectionandinteracti ondireCtlycccoocvvveeiiiiiieiiiiiieeene 483
21.3.7.Examplefor Coi Templ at @ USA0Ecevvviviiiiieieeeeeee ettt 484
21.4.Modeling CCl accessasoperation ODJECEScuvviieiie e 486
21.4.1.Mappi NGRECOr dOPEI AL i ON wuuuuieeeereeeiiiiieeeeeeeeeerrrniesseeeeseeesssnnnaneeeeeeeesssnnnnneeeeeeee. 480
21.4.2.Mappi NGCONMMAr €80DETI AL T ON .vvvriirnieiiieeriieieieeereeesiersteeessneesrsersneessnsesesneensn. 480
21.4.3. Automati COUtPUL reCOrd gENENatioNcuuveeeiiirreeeiiireeeesiire e e e e 487

A S 4] 0= Y PPPPSSSPRY” . ¥ 4
21.4.5. Examplefor Mappi ngRecor dOper at i ONUSAQE ..vvvveeeeeeeieerrrriereeeeessanrrnneeesaeasannns 487
21.4.6. Examplefor Mappi ngCommAr eaCper ati 0NUSAQEccvvvvveeieiieeiieiieeeeeeeeeeeeeeeeeeeeees 489
21.5.TraNSACHIONS.evieeiiiiiie ettt ettt e e snineesssnneeesssnneesssnnnneeessnneeee e s 490
122728 =11 1 - 1 OO PRPSOPPRRSSPRRY Lo 2
P28 L oo [0 o o) o O O POPPPRPPRRY Lo 22
P U L o PO PP OPPPPPPPPPPPY” . 2
22.2.1.BasicMai | Sender andSi npl eMai | MeSSage USA0Euuuuuuuuurnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 492
22.2.2.UsingtheJavamai | Sender andtheM meMessagePr epar at orooccveeeeiivneeennns 493
22.3.UsingtheJavaMail M meMessageHel PErcccvvvviiiiiiiiiiiiicececeeeeeeee et 494
22.3.1. Sending attachmentsandinliNEreSOUICEScccuvvieeieeee e 495
22.3.2. Creating email content usingatemplatinglibrarycccooooiiiiiiie 495
23.Schedulingand Thread POOIINGuueiiiei i 498
pZ2C T I g 1 oo [0 Tox £ o 1 PSSP OPUPPPRRRR” Lo o
23.2. Usingthe OpenSymphony Quartz SCheduUlero 498
23.2.1.UsiNgtheJODDELal BEANccoiviiie ettt 498
23.2.2.UsingtheMet hodl nvoki ngJobDet @i | FACT OF YBEAN ...eeevieeeeiiiiiiiiieeaaeeeeeeiiieeeeeans 499
23.2.3. Wiringupjobsusingtriggersandtheschedul er Fact oryBeanccccceeeeriinnnene. 499
23.3.USINGIDK TIMEN SUPPOITceeiiieieeesiiieeeeaite ettt e s e e e e e e e e 500
23.3.1.CreatingCUSIOMIIMENSuviiiiieeeei ittt ee e e e e se e e e e e s s st r e e e e e s s et reeeeeeas 500
23.3.2.UsingtheMet hodl nvoki ngTi mer TaskFact OF YBEANevveeeeseeeviiireereeesseneennneeeeens 501
23.3.3. Wrapping up: setting up thetasksusingtheTi ner Fact oryBeanccceeeeeeeeeennn. 501

23.4. TheSpringTaskExecut or 8SIFACHIONcocviiiiiiiiiiee e 501

Spring Framework (2.5.6) Xii

The Spring Framework - Reference Documentation

23.4. 1. TaSKEXECUL OF LY PESuuiiiiiieiee e ettt e e e e et e e e e s e e e e e e s s rnreeeeeeesaa 502
23.4.2.USINQATASKEXECUL OF ceeiiuuvvirieeeeeeesiiiuitreeeseaessssissssaseseseessssasssssnssseessssnsnssseseeees 503
24.DYyNamiClangUAgESUPPON Teeeeiiiereeeiaiieeee e ettt e e e st e e e et e e s ssbee e e s sbee e e e e snb e e e e e anbneeeeannnneeas 505
P22 W g 1 oo 8o £ o PR 505
24. 2. ATITSEEXAIMPIE. ...t e e 505

24.3. Defining beansthat are backed by dynamiclanguagescccccevoiiciiiieeie e 507
24.3.1.COMIMONCONCEPLS ..evvvveveeeeeieeereeeeeeeeeeeeerereeeeeeerereeeeeeeeereeerereeererererererrrererererereees 507
24.3.2.JRUDYDEENS ...t 511
24.3.3.GIO0VYDEANScocoei ittt e e a e e e 513
24.3.4.BeaNSNEIDEANS ...t e e 515
S o< g = 1 0L U 516
24.4.1. Scripted SpringMV C CONIOHErSvvveeiiiiee e 516

24.4.2 SCHPtedV alidatOrSt e e e e e e e e 517
24.5.BitSANADODSveiiiiiiiiie e 518
24.5.1. AOP-adviSiNgSCrptedDEANScooiiiiiiie e 518
IS wo o)1 1o RSP 518

24, 6. FUINEIRESOUITES. ... ittt et e e e e e ettt et e e e e e s ettt e e aae e s s s sntaaaeeeeaeeeaasnsstanneeaaeessannnsnees 519

25. Annotationsand Sour ceL evel M etadata SUPPOItuvurueiinininieimrmiiinininrnrnn.—.. 520
P30 L oo (8ot (o] o SRS OUPPPPPPPPRR 520
25.2.5pring'SMEtadalaSUDPONTccoiiureieeiitiee e et e e r e e s s e e e e e e e en 521
PR A o100 = 1[0 P OUPPRPPTPRR 522
e T G 2 =Y [V LI =1 E O PP UPUPOPRPPIIN 522
25.3.2.Other @ANNOLAti ONSINSPIINGvvveiiiieeeei it e e e e eeccrree e e e e s e e e e e e e e e aans 523

25.4. Integrationwith JakartaCommONSALIITDULESccovviiee i 523

25.5. Metadataand Spring AOP AULOPIOXYINGuuueuuurununnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnsnsnsnnns 525

25.5. 1. FUNGAMENTAIS.....ociiiieiie ettt 525

25.5.2. DeclarativetransactionmanagemeNntcoovvereeriireeeeniieee e e e e sieeee e 526

A. XML SchemarbasedCONfIQUIALIONccoieiiiiiiiiiie e e s e e e e s e et reeeeeeas 527
N I T 11 o o RS 527
A.2. XML Schemarbased CONfIgUIAtioNccoiiiiiiiiieiii et e e e 527
A.2.1. ReferenCingtheSChEMASc.uiiiii i 527

F N I =YL I o1 o = P 528
YR T I 1 ST Y=Y o211 1= P 534
A.24.Thel angSChemMa ... 537
YR I 1 ST 1 s o111 11T P 537
A.2.6.Thet x (transaction) SCHEMAeiiiiiiiie e 538

YN A I ¢ ST Yo X 1< 1 0 F= 538
A.2.8. ThECoNt @Xt SCNEIMA......ccciiieiiiie et e e e e e et s e e e e e e eeabb e e e eeeseenees 539
A.2.9.ThEt 001 SCNEIMA et e e e e e e e e s e et e e e e e e e e s nenneeeeeens 540
A.2.10.Thebeans SChEMAoooviiiiiiiiieeeeeeee e 540

A 3.SEINGUPYOUN IDE ...ttt e s e e e e e e et e e e e annreee s 541
F R IS = 1 1] Lo U o] =l 1T o= PSR 541
A.3.2.SattingUPINEEITIIIDEA ..ottt 544
A3 INEEGIaliONISSUES......ccc e 547
B.EXteNSIDIE@XIML BULNOIIING ...ttt e e et e e s e e e e anbneeeen 548
= 10 1T [o1 o o TR SSUPPRRRR 548
B.2. AUthOrNGtheSChEmMaoiieeeeeec e e 548
B.3.COodiNGANAMESPACEHANTI 5 ...eiiiiiiiiieiiiiitee ettt e e ettt et e e e e e e et e e e e asb e e e e e annne e e e s anneeeeen 549
B.4.CodiNgaBeanDef i Ni ti ONPAI SEI ...cciiicuiiieieeeeesieiitirreeeeeeeessainrrrereeaeesssastrrraereeeesssannrrreneeeens 550
B.5. Registeringthehandler andthesChema...........c..ovie i 551
B.5.1. META- I NF/ SPring. RANdl € S' couuuiiiiiiiiieeiiiii e et ee et e et e e e e e e e e e e e e et e e e e eaan s 551
B.5.2." META- | NF/ SPIi NQ. SCHEITAS' .uuuiiiieeiiiiiiiiie i e e e e e e eeeti e e e e e e e e e e et st e e e e e e seeeastaa e eeeeeensenns 551

Spring Framework (2.5.6)

Xiii

The Spring Framework - Reference Documentation

B.6. Using acustom extensioninyour Spring XML configurationcccuvveeniieeeeinineeessiieeenn 551
B.7. MEAErEXAMPIES ... e e e e e e e e e e e e e e e e e r e e e e e e e e et raarraaaeaaans 552
B.7.1. Nesting custom tagSWithin CUSLOMTAgSccoviiriieiiiiiiiieiiiee e 552
B.7.2. Customattributeson'normal’ el ements...........cccccuviiiiiiiiiin i 555
B.8.FUMNEIRESOUITES.......ccuiiiiiiii e 556
ORI 1ol oJ=Y: 1 TR O e | A IO USRI 558
)R 10T 1 o SRR 567
[0 g1 oo (3 1o o TP TR OURPPURPTN 567
T2 N o= T I T L = o [P 567
D.3. TheescapeBody Ta0ceiiiieiiieiiiee e e e e s ettt e e e e s e e e e e e e e e s e st e e e e e e e e s e ssasraaaeeeaeeessannnssnnneeeens 567
[T T = Vo = o R = o 568
D.5. TNt M ESCAPETAY .. uvteeee it ettt s ettt ettt e e et e e e st e e e e asb b e e e e ansbe e e e e anbneeeean 568
DR I 0 T= T e T = TS 568
D.7.Thenest @dPat hTAQcccuiiiiiiii et e e e s e e e e e e e s s et e e e e e e e e s s anntaraneeaeas 569
D.8. TNEE NEIMBTAT ... teeee ettt ettt e et e et e e ekt e e e e asb e e e e annn e e e e e anrneeeean 569
(DR R N 0Tl oLy Ao 1 = o [PR SP 570
[o] 0o T o700 0 01 [0 TP PO PP PUPPROPPPRT 571
E.LINErOQUCTION. ...t s e s 571
R I L= 1o Yoy 4 1o = SRR 571
E.3. TNECHECKDOXES TAY «.ueteeee ittt e et e e e e e e e e e e snnneeeen 573
R I LT o Y - o [P 574
B 5. TNEE OF MBI ..ottt et e e ekttt e e e e e e e e annn e e e s nnnneeeen 576
S I L= T s LY = o RS E PR OO 577
E.7.TNEI NPUL T8O ..ttt ettt e e e e e e e st e e e et e e e e e annbe e e e e nnbneeeen 577
RS I 0= VoY = o S 579
e R I L= Lo oL A T = o [PPSO 580
E.10. TNEOPE i ONSTAG -+ +eteitteeee ettt ettt e e e e e e e e e st e e e e asb e e e e annne e e e s annneeeen 581
o I 1o T T Y T = o [SRR 583
E.12.TNEr adi ODUL T ONTAO .. ueeieiitiiieeiiiieiee ettt s e e e e et e e e e e e e e s annn e e e e e nnnnneeean 584
E.13.Ther adi 0bUt t ONSTA0uuviiiiieiee e e it ce e e e s e e e e e e e e s s et re e e e e e e e e e s satbbr e e e eeeeessannntarnneeeens 586
E.L14. TNESEI €CE LAY .vveeeiiiiiiee ettt ettt e et e e e st e e e et e e e e sttt e e e abbb e e e e annbe e e e e nntneeeean 587
TN I 1= =3 A= Y =YX - o 589

Spring Framework (2.5.6) Xiv

Preface

Developing software applications is hard enough even with good tools and technologies. Implementing
applications using platforms which promise everything but turn out to be heavy-weight, hard to control and not
very efficient during the development cycle makes it even harder. Spring provides a light-weight solution for
building enterprise-ready applications, while still supporting the possibility of using declarative transaction
management, remote access to your logic using RMI or web services, and various options for persisting your
data to a database. Spring provides a full-featured MV C framework, and transparent ways of integrating AOP
into your software.

Spring could potentially be a one-stop-shop for al your enterprise applications, however, Spring is modular,
allowing you to use just those parts of it that you need, without having to bring in the rest. Y ou can use the |oC
container, with Struts on top, but you could also choose to use just the Hibernate integration code or the JDBC
abstraction layer. Spring has been (and continues to be) designed to be non-intrusive, meaning dependencies on
the framework itself are generally none (or absolutely minimal, depending on the area of use).

This document provides a reference guide to Spring's features. Since this document is still to be considered
very much work-in-progress, if you have any requests or comments, please post them on the user mailing list or
on the support forums at http://forum.springframework.org/.

Before we go on, a few words of gratitude are due to Christian Bauer (of the Hibernate team), who prepared
and adapted the DocBook-XSL software in order to be able to create Hibernate's reference guide, thus aso
allowing usto create this one. Also thanks to Russell Healy for doing an extensive and valuable review of some
of the material.

Spring Framework (2.5.6) XV

http://forum.springframework.org/
http://www.hibernate.org/

Chapter 1. Introduction

Background

In early 2004, Martin Fowler asked the readers of his site: when talking about Inversion of Control: “the
guestion is, what aspect of control are [they] inverting?’. Fowler then suggested renaming the principle
(or at least giving it a more self-explanatory name), and started to use the term Dependency Injection. His
article then continued to explain the ideas underpinning the Inversion of Control (1oC) and Dependency
Injection (DI) principle.

If you need a decent insight into loC and DI, please do refer to said article
http://martinfowl er.com/articles/injection.html.

Java applications (aloose term which runs the gamut from constrained applets to full-fledged n-tier server-side
enterprise applications) typically are composed of a number of objects that collaborate with one another to form
the application proper. The objects in an application can thus be said to have dependencies between themselves.

The Java language and platform provides a wealth of functionality for architecting and building applications,
ranging all the way from the very basic building blocks of primitive types and classes (and the means to define
new classes), to rich full-featured application servers and web frameworks. One area that is decidedly
conspicuous by its absence is any means of taking the basic building blocks and composing them into a
coherent whole; this area has typically been left to the purvey of the architects and developers tasked with
building an application (or applications). Now to be fair, there are a number of design patterns devoted to the
business of composing the various classes and object instances that makeup an all-singing, al-dancing
application. Design patterns such as Factory, Abstract Factory, Builder, Decorator, and Service Locator (to
name but a few) have widespread recognition and acceptance within the software development industry
(presumably that is why these patterns have been formalized as patternsin the first place). Thisis all very well,
but these patterns are just that: best practices given a name, typically together with a description of what the
pattern does, where the pattern is typically best applied, the problems that the application of the pattern
addresses, and so forth. Notice that the last paragraph used the phrase “... a description of what the pattern
does...”; pattern books and wikis are typically listings of such formalized best practice that you can certainly
take away, mull over, and then implement yourself in your application.

The 10C component of the Spring Framework addresses the enterprise concern of taking the classes, objects,
and services that are to compose an application, by providing a formalized means of composing these various
disparate components into a fully working application ready for use. The Spring Framework takes best
practices that have been proven over the years in numerous applications and formalized as design patterns, and
actually codifies these patterns as first class objects that you as an architect and developer can take away and
integrate into your own application(s). This is a Very Good Thing Indeed as attested to by the numerous
organizations and institutions that have used the Spring Framework to engineer robust, maintainable
applications.

1.1. Overview

The Spring Framework contains a lot of features, which are well-organized in six modules shown in the
diagram below. This chapter discusses each of the modulesin turn.

Spring Framework (2.5.6) 16

http://martinfowler.com/articles/injection.html

Introduction

ORM Web

DAO

Hibernate Sorina Web MVC
pring We
Spring JD_BC Tc;J:)DL'?nk J E E Framework Integratior
Transaction JDO Struts
management 0JB WebWork
iBatis JMX Tapestry
JMS JSF
JCA Rich View Support
Remoting JSPs
EJBs Velocity
Email FreeMarker
PDF
Jasper Reports
AOP

Spring Portlet MVC

Spring AOP
Aspectd integration

Core

The loC container

Overview of the Spring Framework

Spring Framework (2.5.6) 17

Introduction

The Core package is the most fundamental part of the framework and provides the 10C and Dependency
Injection features. The basic concept here is the BeanFact ory, which provides a sophisticated implementation
of the factory pattern which removes the need for programmatic singletons and allows you to decouple the
configuration and specification of dependencies from your actual program logic.

The Context package build on the solid base provided by the Core package: it provides away to access objects
in a framework-style manner in a fashion somewhat reminiscent of a JNDI-registry. The context package
inherits its features from the beans package and adds support for internationalization (118N) (using for example
resource bundles), event-propagation, resource-loading, and the transparent creation of contexts by, for
example, a serviet container.

The DAQO package provides a JDBC-abstraction layer that removes the need to do tedious JDBC coding and
parsing of database-vendor specific error codes. Also, the JDBC package provides away to do programmatic as
well as declarative transaction management, not only for classes implementing specia interfaces, but for all
your POJOs (plain old Java objects).

The ORM package provides integration layers for popular object-relational mapping APIs, including JPA, JDO,
Hibernate, and iBatis. Using the ORM package you can use all those O/R-mappers in combination with all the
other features Spring offers, such as the simple declarative transaction management feature mentioned
previoudly.

Spring's AOP package provides an AOP Alliance-compliant aspect-oriented programming implementation
allowing you to define, for example, method-interceptors and pointcuts to cleanly decouple code implementing
functionality that should logicaly speaking be separated. Using source-level metadata functionality you can
also incorporate all kinds of behavioral information into your code, in a manner similar to that of .NET
attributes.

Spring's Web package provides basic web-oriented integration features, such as multipart file-upload
functionality, the initialization of the 1oC container using servlet listeners and a web-oriented application
context. When using Spring together with WebWork or Struts, this is the package to integrate with.

Spring's MVC package provides a Model-View-Controller (MVC) implementation for web-applications.
Spring's MV C framework is not just any old implementation; it provides a clean separation between domain
model code and web forms, and allows you to use al the other features of the Spring Framework.

1.2. Usage scenarios

With the building blocks described above you can use Spring in al sorts of scenarios, from applets up to
fully-fledged enterprise applications using Spring's transaction management functionality and web framework
integration.

Spring Framework (2.5.6) 18

Introduction

Form Controllers . Dynamic binding of Integration with JSP,
handling form LTS (RSl data to the domain Velocity, XSLT, PDF,
3 . to handle file uploads
interaction model Excel
Spring Web MVC
} WebApplicationContext providing e.g. messaging I
Spring Web
—‘ Declarative transaction management for POJOs Ii Remote
Sending access via
Email . Hession,
Spring Context Burlap, SOAP
—‘ Custom business logic
Spring AOP Spring ORM
Hibernate mappings
Custom Hibernate DAOs
Spring Core Spring DAO
Servlet Container (Tomcat / Jetty)

Typical full-fledged Spring web application

By using Spring's declarative transaction management features the web application is fully transactional, just as
it would be when using container managed transactions as provided by Enterprise JavaBeans. All your custom
business logic can be implemented using ssimple POJOs, managed by Spring's 10C container. Additional
services include support for sending email, and validation that is independent of the web layer enabling you to
choose where to execute validation rules. Spring's ORM support is integrated with JPA, Hibernate, JDO and
iBatis; for example, when using Hibernate, you can continue to use your existing mapping files and standard
Hibernate Sessi onFact ory configuration. Form controllers seamlessly integrate the web-layer with the domain
model, removing the need for Act i onFor ms or other classes that transform HT TP parameters to values for your
domain model.

Web frontend using
Struts or WebWork

Spring WEB

Spring AOP Spring ORM

Transaction management
Using Spring decl. trans.

Hibernate mappings
Custom Hibernate DAOs

Spring Core Spring DAO

Servlet Container (Tomcat / Jetty)

Spring middle-tier using a third-party web framework

Sometimes the current circumstances do not allow you to completely switch to a different framework. The

Spring Framework (2.5.6) 19

Introduction

Spring Framework does not force you to use everything within it; it is not an all-or-nothing solution. Existing
front-ends built using WebWork, Struts, Tapestry, or other Ul frameworks can be integrated perfectly well with
a Spring-based middle-tier, allowing you to use the transaction features that Spring offers. The only thing you
need to do is wire up your business logic using an Appl i cati onCont ext and integrate your web layer using a
WebAppl i cati onCont ext .

RMI

JAX RPC client Hessian client Burlap client .
client

Transparent remote access (using remote package)

Custom logic contained by beans

Spring Core Spring Context

Servlet Container (e.g. Tomcat / Jetty)

Remoting usage scenario

When you need to access existing code via web services, you can use Spring's Hessi an-, Burl ap-, Ri- Or
JaxRpcProxyFactory classes. Enabling remote access to existing applications suddenly is not that hard

anymore.

EJB Access layer using
Slsbinvokers

Spring-managed EJBs ST G

Spring Core Spring DAO

Application Server (e.g. JBoss, WebLogic)

EJBs - Wrapping existing POJOs

The Spring Framework also provides an access- and abstraction- layer for Enterprise JavaBeans, enabling you
to reuse your existing POJOs and wrap them in Stateless Session Beans, for use in scalable, failsafe web
applications that might need declarative security.

Spring Framework (2.5.6) 20

Chapter 2. What's new in Spring 2.0 and 2.5?

2.1. Introduction

If you have been using the Spring Framework for some time, you will be aware that Spring has undergone two
major revisions: Spring 2.0, released in October 2006, and Spring 2.5, released in November 2007.

Java SE and Java EE Support

The Spring Framework continues to be compatible with all versions of Java since (and including) Java
1.4.2. This means that Java 1.4.2, Java 5 and Java 6 are supported, although some advanced functionality
of the Spring Framework will not be available to you if you are committed to using Java 1.4.2. Spring 2.5
introduces dedicated support for Java 6, after Spring 2.0's in-depth support for Java 5 throughout the
framework.

Furthermore, Spring remains compatible with J2EE 1.3 and higher, while at the same time introducing
dedicated support for Java EE 5. This means that Spring can be consistently used on application servers
such as BEA WebLogic 8.1, 9.0, 9.2 and 10, IBM WebSphere 5.1, 6.0, 6.1 and 7, Oracle OC4J 10.1.3 and
11, JBoss 3.2, 4.0, 4.2 and 5.0, as well as Tomcat 4.1, 5.0, 5.5 and 6.0, Jetty 4.2, 5.1 and 6.1, Resin 2.1,
3.0and 3.1 and GlassFish V1 and V2.

NOTE: We generally recommend using the most recent version of each application server generation. In
particular, make sure you are using BEA WebLogic 8.1 SP6 or higher and WebSphere 6.0.2.19/ 6.1.0.9
or higher, respectively, when using those WebLogic and WebSpher e generations with Soring 2.5.

This chapter is a guide to the new and improved features of Spring 2.0 and 2.5. It is intended to provide a
high-level summary so that seasoned Spring architects and developers can become immediately familiar with
the new Spring 2.x functionality. For more in-depth information on the features, please refer to the
corresponding sections hyperlinked from within this chapter.

2.2. The Inversion of Control (loC) container

One of the areas that contains a considerable number of 2.0 and 2.5 improvementsis Spring's |oC container.

2.2.1. New bean scopes

Previous versions of Spring had 10C container level support for exactly two distinct bean scopes (singleton and
prototype). Spring 2.0 improves on this by not only providing a number of additional scopes depending on the
environment in which Spring is being deployed (for example, request and session scoped beans in a web
environment), but also by providing integration points so that Spring users can create their own scopes.

It should be noted that although the underlying (and internal) implementation for singleton- and
prototype-scoped beans has been changed, this change is totally transparent to the end user... no existing
configuration needs to change, and no existing configuration will break.

Both the new and the original scopes are detailed in the section entitled Section 3.4, “Bean scopes’.

Spring Framework (2.5.6) 21

What's new in Spring 2.0 and 2.5?

2.2.2. Easier XML configuration

Spring XML configuration is now even easier, thanks to the advent of the new XML configuration syntax
based on XML Schema. If you want to take advantage of the new tags that Spring provides (and the Spring
team certainly suggest that you do because they make configuration less verbose and easier to read), then do
read the section entitled Appendix A, XML Schema-based configuration.

On arelated note, thereis anew, updated DTD for Spring 2.0 that you may wish to reference if you cannot take
advantage of the XML Schema-based configuration. The DOCTY PE declaration is included below for your
convenience, but the interested reader should definitely read the * spri ng- beans-2. 0. dtd* DTD included in
the' di st/ resources' directory of the Spring 2.5 distribution.

<! DOCTYPE beans PUBLIC "-//SPRI NG/ DTD BEAN 2. 0//EN'
"http://ww. springframewor k. org/ dtd/ spring-beans-2.0.dtd">

2.2.3. Extensible XML authoring

Not only is XML configuration easier to write, it isnow also extensible.

What 'extensible’ means in this context is that you, as an application developer, or (more likely) as athird party
framework or product vendor, can write custom tags that other developers can then plug into their own Spring
configuration files. This allows you to have your own domain specific language (the term is used loosely here)
of sorts be reflected in the specific configuration of your own components.

Implementing custom Spring tags may not be of interest to every single application developer or enterprise
architect using Spring in their own projects. We expect third-party vendors to be highly interested in
devel oping custom configuration tags for use in Spring configuration files.

The extensible configuration mechanism is documented in Appendix B, Extensible XML authoring.

2.2.4. Annotation-driven configuration

Spring 2.0 introduced support for various annotations for configuration purposes, such as @r ansacti onal ,
@Requi r ed and @er si st enceCont ext /@ersi st enceUnit.

Spring 2.5 introduces support for a complete set of configuration annotations: @ut owi r ed in combination with
support for the JSR-250 annotations @resour ce, @ost Const ruct and @r eDest r oy .

Annotation-driven bean configuration is discussed in Section 3.11, “Annotation-based configuration”. Check
out annotation support for Spring MV C aswell: Section 2.5.3, “ Annotation-based controllers’

2.2.5. Autodetecting components in the classpath

Spring 2.5 introduces support component scanning: autodetecting annotated components in the classpath.
Typically, such component classes will be annotated with stereotypes such as @onponent, @repository,
@er vi ce, @ontrol | er. Depending on the application context configuration, such component classes will be
autodetected and turned into Spring bean definitions, not requiring explicit configuration for each such bean.

Annotation-driven bean configuration is discussed in Section 3.12.1, “@onponent and further stereotype
annotations’.

Spring Framework (2.5.6) 22

What's new in Spring 2.0 and 2.5?

2.3. Aspect Oriented Programming (AOP)

Spring 2.0 has a much improved AOP offering. The Spring AOP framework itself is markedly easier to
configure in XML, and significantly less verbose as a result; and Spring 2.0 integrates with the Aspect]
pointcut language and @A spectJ aspect declaration style. The chapter entitled Chapter 6, Aspect Oriented
Programming with Spring is dedicated to describing this new support.

2.3.1. Easier AOP XML configuration

Spring 2.0 introduces new schema support for defining aspects backed by regular Java objects. This support
takes advantage of the AspectJ pointcut language and offers fully typed advice (i.e. no more casting and
Obj ect[] argument manipulation). Details of this support can be found in the section entitled Section 6.3,
“ Schema-based AOP support”.

2.3.2. Support for @Aspect] aspects

Spring 2.0 also supports aspects defined using the @A spectJ annotations. These aspects can be shared between
Aspectd and Spring AOP, and require (honestly!) only some simple configuration. Said support for @AspectJ
aspectsis discussed in Section 6.2, * @A spectJ support”.

2.3.3. Support for bean name pointcut element

Spring 2.5 introduces support for the bean(. . .) pointcut element, matching specific named beans according to
Spring-defined bean names. See Section 6.2.3.1, “ Supported Pointcut Designators’ for details.

2.3.4. Support for AspectJ load-time weaving

Spring 2.5 introduces explicit support Aspect] load-time weaving, as alternative to the proxy-based AOP
framework. The new context:|oad-time-weaver configuration element automatically activates AspectJ
aspects as defined in AspectJs META- | NF/ aop. xnd descriptor, applying them to the current application context
through registering a transformer with the underlying ClassLoader. Note that this only works in environments
with class transformation support. Check out Section 6.8.4, “Load-time weaving with AspectJ in the Spring
Framework” for the capabilities and limitations.

2.4. The Middle Tier

2.4.1. Easier configuration of declarative transactions in XML

The way that transactions are configured in Spring 2.0 has been changed significantly. The previous 1.2.x style
of configuration continues to be valid (and supported), but the new style is markedly less verbose and is the
recommended style. Spring 2.0 also ships with an AspectJ aspects library that you can use to make pretty much
any object transactional - even objects not created by the Spring 10C container.

Spring 2.5 supports convenient annotation-driven transaction management in combination with load-time
weaving, through the use of context:load-tine-weaver in combination with tx:annotation-driven
nmode="aspectj".

The chapter entitled Chapter 9, Transaction management contains all of the details.

Spring Framework (2.5.6) 23

What's new in Spring 2.0 and 2.5?

2.4.2. Full WebSphere transaction management support

Spring 2.5 explicitly supports IBM's WebSphere Application Server, in particular with respect to WebSphere's
transaction manager. Transaction suspension is now fully supported through the use of WebSphere's new
uowvanager API, which isavailable on WAS 6.0.2.19+ and 6.0.1.9+,

So if you run a Spring-based application on the WebSphere Application Server, we highly recommend to use
Spring 2.5's WebSpher eUowTr ansact i onManager &S YOUr Pl at f or nilr ansact i onManager Of choice. Thisis also
IBM's official recommendation.

For automatic detection of the underlying JTA-based transaction platform, consider the use of Spring 2.5's new
tx:jta-transaction-mnager configuration element. This will autodetect BEA WebLogic and IBM
WebSphere, registering the appropriate Pl at f or niTr ansact i onManager .

2.4.3. JPA

Spring 2.0 ships with a JPA abstraction layer that is similar in intent to Spring's JDBC abstraction layer in
terms of scope and general usage patterns.

If you are interested in using a JPA-implementation as the backbone of your persistence layer, the section
entitled Section 12.6, “JPA” is dedicated to detailing Spring's support and value-add in this area.

Spring 2.5 upgrades its OpenJPA support to OpenJPA 1.0, with support for advanced features such as
savepoints.

2.4.4. Asynchronous JMS

Prior to Spring 2.0, Spring's IMS offering was limited to sending messages and the synchronous receiving of
messages. This functionality (encapsulated in the JnsTenpl ate class) is great, but it doesn't address the
requirement for the asynchronous receiving of messages.

Spring 2.0 now ships with full support for the reception of messages in an asynchronous fashion, as detailed in
the section entitled Section 19.4.2, “ Asynchronous Reception - Message-Driven POJOS”.

As of Spring 2.5, the JCA style of setting up asynchronous message listeners is supported as well, through the
Gener i cMessageEndpoi nt Manager facility. Thisis an aternative to the standard JMS listener facility, allowing
closer integration with message brokers such as ActiveMQ and JORAM. See Section 19.5, “ Support for JCA
Message Endpoints”.

Spring 2.5 aso introduces an XML namespace for simplifying JMS configuration, offering concise
configuration of a large numbers of listeners. This namespace supports both the standard IMS listener facility
as well as the JCA setup style, with minimal changes in the configuration. See Section 19.6, “JMS Namespace
Support”.

2.4.5.JDBC

There are some small (but nevertheless notable) new classes in the Spring Framework's JDBC support library.
The first, NanedPar anet er JdbcTenpl at e, provides support for programming JDBC statements using named
parameters (as opposed to programming JDBC statements using only classic placeholder (' ?*) arguments.

Another of the new classes, the Si npl eJdbcTenpl at e, is amed at making using the JdbcTenpl at e even easier
to use when you are developing against Java 5+ (Tiger).

Spring Framework (2.5.6) 24

What's new in Spring 2.0 and 2.5?

Spring 2.5 significantly extends the functionality of Si npl eJdbcTenpl at e and introduces Si npl eJdbccCal | and
Si npl eJdbcl nsert operation objects.

2.5. The Web Tier

The web tier support has been substantially improved and expanded in Spring 2.0, with annotation-based
controllersintroduced in Spring 2.5.

2.5.1. Sensible defaulting in Spring MVC

For alot of projects, sticking to established conventions and having reasonable defaultsis just what the projects
need... this theme of convention-over-configuration now has explicit support in Spring MV C. What this means
isthat if you establish a set of naming conventions for your Control | ers and views, you can substantially cut
down on the amount of XML configuration that is required to setup handler mappings, view resolvers,
Mbdel AndVi ew instances, etc. Thisis a great boon with regards to rapid prototyping, and can aso lend a degree
of (always good-to-have) consistency across a codebase.

Spring MVC's convention-over-configuration support is detailed in the section entitled Section 13.10,
“Convention over configuration”

2.5.2. Portlet framework

Spring 2.0 ships with a Portlet framework that is conceptually similar to the Spring MV C framework. Detailed
coverage of the Spring Portlet framework can be found in the section entitled Chapter 16, Portlet MVC
Framework.

2.5.3. Annotation-based controllers

Spring 2.5 introduces an annotation-based programming model for MV C controllers, using annotations such as
@request Mappi ng, @equest Par am @bdel At tri but e, etc. This annotation support is available for both Servlet
MVC and Portlet MV C. Controllers implemented in this style do not have to extend specific base classes or
implement specific interfaces. Furthermore, they do not usually have direct dependencies on Servlet or Portlet
API's, although they can easily get access to Servlet or Portlet facilities if desired. For further details, see
Section 13.11, “Annotation-based controller configuration”.

2.5.4. A form tag library for Spring MVC

A rich JSP tag library for Spring MV C was the JIRA issue that garnered the most votes from Spring users (by a
wide margin).

Spring 2.0 ships with a full featured JSP tag library that makes the job of authoring JSP pages much easier
when using Spring MV C; the Spring team is confident it will satisfy all of those developers who voted for the
issue on JRA. The new tag library isitself covered in the section entitled Section 14.2.4, “Using Spring's form
tag library”, and a quick reference to all of the new tags can be found in the appendix entitled Appendix E,
spring-form.tld.

2.5.5. Tiles 2 support

Spring 2.5 ships support for Tiles 2, the next generation of the popular Tiles templating framework. This

Spring Framework (2.5.6) 25

What's new in Spring 2.0 and 2.5?

supersedes Spring's former support for Tiles 1, asincluded in Struts 1.x. See Section 14.3, “Tiles’ for details.

2.5.6. JSF 1.2 support

Spring 2.5 supports JSF 1.2, providing a JSF 1.2 variant of Spring's Del egat i ngVar i abl eResol ver in the form
of the new Spri ngBeanFacesELResol ver .

2.5.7. JAX-WS support

Spring 2.5 fully supports JAX-WS 2.0/2.1, as included in Java 6 and Java EE 5. JAX-WS is the successor of
JAX-RPC, allowing access to WSDL/SOAP-based web services as well as JAX-WS style exposure of web
Services.

2.6. Everything else

Thisfinal section outlines al of the other new and improved Spring 2.0/2.5 features and functionality.

2.6.1. Dynamic language support

Spring 2.0 introduced support for beans written in languages other than Java, with the currently supported
dynamic languages being JRuby, Groovy and BeanShell. This dynamic language support is comprehensively
detailed in the section entitled Chapter 24, Dynamic language support.

Spring 2.5 refines the dynamic languages support with autowiring and support for the recently released JRuby
1.0.

2.6.2. Enhanced testing support

Spring 2.5 introduces the Spring TestContext Framework which provides annotation-driven unit and integration
testing support that is agnostic of the actual testing framework in use. The same techniques and
annotation-based configuration used in, for example, a JUnit 3.8 environment can also be applied to tests
written with JUnit 4.4, TestNG, etc.

In addition to providing generic and extensible testing infrastructure, the Spring TestContext Framework
provides out-of-the-box support for Spring-specific integration testing functionality such as context
management and caching, dependency injection of test fixtures, and transactional test management with default
rollback semantics.

To discover how this new testing support can assist you with writing unit and integration tests, consult
Section 8.3.7, “ Spring TestContext Framework” of the revised testing chapter.

2.6.3. IMX support

The Spring Framework 2.0 has support for Noti fi cati ons; it is also possible to exercise declarative control
over the registration behavior of MBeans with an MBeanSer ver .

* Section 20.7, “Notifications”

» Section 20.2.5, “Controlling the registration behavior”

Spring Framework (2.5.6) 26

What's new in Spring 2.0 and 2.5?

Furthermore, Spring 2.5 provides a cont ext : nbean- expor t configuration element for convenient registration
of annotated bean classes, detecting Spring's @vknagedResour ce annotation.

2.6.4. Deploying a Spring application context as JCA adapter

Spring 2.5 supports the deployment of a Spring application context as JCA resource adapter, packaged as a
JCA RAR file. This allows headless application modules to be deployed into J2EE servers, getting access to all
the server'sinfrastructure e.g. for executing scheduled tasks, listening for incoming messages, etc.

2.6.5. Task scheduling

Spring 2.0 offers an abstraction around the scheduling of tasks. For the interested devel oper, the section entitled
Section 23.4, “The Spring TaskExecut or abstraction” contains all of the details.

The TaskExecut or abstraction is used throughout the framework itself as well, e.g. for the asynchronous IMS

support. In Spring 2.5, it isalso used in the JCA environment support.

2.6.6. Java 5 (Tiger) support

Find below pointers to documentation describing some of the new Java 5 support in Spring 2.0 and 2.5.

» Section 3.11, “Annotation-based configuration”
* Section 25.3.1, “@requi red”

e Section 9.5.6, “Using @r ansact i onal ”

* Section 11.2.3, “Si npl eJdbcTenpl at e”

» Section 12.6, “ JPA”

e Section 6.2, “ @A spectJ support”

e Section 6.8.1, “Using AspectJ to dependency inject domain objects with Spring”

2.7. Migrating to Spring 2.5

Thisfinal section details issues that may arise during any migration from Spring 1.2/2.0 to Spring 2.5.

Upgrading to Spring 2.5 from a Spring 2.0.x application should simply be a matter of dropping the Spring 2.5
jar into the appropriate location in your application's directory structure. We highly recommend upgrading to
Spring 2.5 from any Spring 2.0 application that runs on JDK 1.4.2 or higher, in particular when running on Java
5 or higher, leveraging the significant configuration conveniences and performance improvements that Spring
2.5 hasto offer.

Whether an upgrade from Spring 1.2.x will be as seamless depends on how much of the Spring APIs you are
using in your code. Spring 2.0 removed pretty much al of the classes and methods previously marked as
deprecated in the Spring 1.2.x codebase, so if you have been using such classes and methods, you will of course
have to use alternative classes and methods (some of which are summarized below).

With regards to configuration, Spring 1.2.x style XML configuration is 100%, satisfaction-guaranteed

Spring Framework (2.5.6) 27

What's new in Spring 2.0 and 2.5?

compatible with the Spring 2.5 library. Of course if you are still using the Spring 1.2.x DTD, then you won't be
able to take advantage of some of the new Spring 2.0 functionality (such as scopes and easier AOP and
transaction configuration), but nothing will blow up.

The suggested migration strategy isto drop in the Spring 2.5 jar(s) to benefit from the improved code present in
the release (bug fixes, optimizations, etc.). Y ou can then, on an incremental basis, choose to start using the new
Spring 2.5 features and configuration. For example, you could choose to start configuring just your aspects in
the new Spring 2 style; it is perfectly valid to have 90% of your configuration using the old-school Spring 1.2.x
configuration (which references the 1.2.x DTD), and have the other 10% using the new Spring 2 configuration
(which references the 2.0/2.5 DTD or XSD). Bear in mind that you are not forced to upgrade your XML
configuration should you choose to drop in the Spring 2.5 libraries.

2.7.1. Changes

For a comprehensive list of changes, consult the ' changel og. t xt* file that islocated in the top level directory
of the Spring Framework distribution.

2.7.1.1. Supported JDK versions

As of Spring 2.5, support for JDK 1.3 has been removed, following Sun's official deprecation of JDK 1.3 in late
2006. If you haven't done so already, upgrade to JDK 1.4.2 or higher.

If you need to stick with an application server that only supports JDK 1.3, such as WebSphere 4.0 or 5.0, we
recommend using the Spring Framework version 2.0.7/2.0.8 which still supports JDK 1.3.

2.7.1.2. Jar packaging in Spring 2.5

As of Spring 2.5, Spring Web MV C is no longer part of the ' spring.jar' file. Spring MVC can be found in
"spring-webmvc.jar' and ' spring-webnvc-portlet.jar' inthelib/modul es directory of the distribution.
Furthermore, the Struts 1.x support has been factored out into * spri ng- webnvc-struts.jar' .

Note: The commonly used Spring's b spat cher Servl et is part of Soring's Web MVC framework. As a
consequence, you heed to add ' spring-webnvc.jar' (Or ‘spring-webnvc-portlet/struts.jar') t0 a
"spring.jar' scenario, even if you are just using Di spat cher Servl et for remoting purposes (e.g. exporting
Hessian or HTTP invoker services).

Spring 2.0's 'spring-jmx.jar’ and ‘'spring-renpting.jar’ have been merged into Spring 2.5's
"spring-context.jar' (for the IMX and non-HTTP remoting support) and partly into* spri ng-web. j ar' (for
the HTTP remoting support).

Spring 2.0's * spring-support.jar’ has been renamed to ' spring-context -support.jar', expressing the
actual support relationship more closely. 'spring-portlet.jar' has been renamed to
"spring-webmvc-portlet.jar', since it is technicaly a submodule of Spring's Web MVC framework.
Anaogoudly, ' spring-struts.jar' hasbeenrenamedto' spri ng-webnvc-struts.jar'.

Spring 2.0's'spring-jdo.jar', 'spring-jpa.jar', ' spring-hibernate3.jar', ' spring-toplink.jar' and
"spring-ibatis.jar' havebeen combined into Spring 2.5's coarse-granular ' spring-ormjar' .

Spring 2.5's" spring-test.jar' supersedesthe previous' spri ng-mock. j ar' , indicating the stronger focus on
the test context framework. Note that ' spring-test.jar' contains everything ' spri ng- nock. j ar' contained
in previous Spring versions; hence it can be used as a straightforward replacement for unit and integration
testing purposes.

Spring Framework (2.5.6) 28

What's new in Spring 2.0 and 2.5?

Spring 2.5's 'spring-tx.jar' supersedes the previous 'spring-dao.jar’ and 'spring-jca.jar' files,
indicating the stronger focus on the transaction framework.

Spring 2.5 ships its framework jars as OSGi-compliant bundles out of the box. This facilitates use of Spring in
OSGi environments, not requiring custom packaging anymore.

2.7.1.3. XML configuration

Spring 2.0 ships with XSDs that describe Spring's XML metadata format in a much richer fashion than the
DTD that shipped with previous versions. The old DTD is till fully supported, but if possible you are
encouraged to reference the XSD files at the top of your bean definition files.

One thing that has changed in a (somewhat) breaking fashion is the way that bean scopes are defined. If you are
using the Spring 1.2 DTD you can continue to use the ' si ngl eton' attribute. You can however choose to
reference the new Spring 2.0 DTD which does not permit the use of the' si ngl et on' attribute, but rather uses
the' scope' attribute to define the bean lifecycle scope.

2.7.1.4. Deprecated classes and methods

A number of classes and methods that previously were marked as @lepr ecat ed have been removed from the
Spring 2.0 codebase. The Spring team decided that the 2.0 release marked a fresh start of sorts, and that any
deprecated 'cruft’ was better excised now instead of continuing to haunt the codebase for the foreseeable future.

As mentioned previoudly, for a comprehensive list of changes, consult the' changel og. t xt ' file that is located
in the top level directory of the Spring Framework distribution.

The following classes/interfaces have been removed as of Spring 2.0:

e Resul t Reader : Usethe Rowvapper interface instead.

e BeanFact or yBoot st rap : Consider using aBeanFact or yLocat or Or acustom bootstrap class instead.

2.7.1.5. Apache 0OJB

As of Spring 2.0, support for Apache OJB was totally removed from the main Spring source tree. The Apache
OJB integration library is still available, but can be found in its new home in the Spring Modules project.

2.7.1.6. iIBATIS

Please note that support for iBATIS SQL Maps 1.3 has been removed. If you haven't done so already, upgrade
to iIBATIS SQL Maps 2.3.

2.7.1.7. Hibernate

As of Spring 2.5, support for Hibernate 2.1 and Hibernate 3.0 has been removed. If you haven't done so
already, upgrade to Hibernate 3.1 or higher.

If you need to stick with Hibernate 2.1 or 3.0 for the time being, we recommend to keep using the Spring
Framework version 2.0.7/2.0.8 which still supports those versions of Hibernate.

2.7.1.8.JDO

Asof Spring 2.5, support for JDO 1.0 has been removed. If you haven't done so aready, upgrade to JDO 2.0 or

Spring Framework (2.5.6) 29

https://springmodules.dev.java.net/

What's new in Spring 2.0 and 2.5?

higher.

If you need to stick with JDO 1.0 for the time being, we recommend to keep using the Spring Framework
version 2.0.7/2.0.8 which still supports that version of JDO.

2.7.1.9. Url Fi | enarmeVi ewControl | er

Since Spring 2.0, the view name that is determined by the Ur | Fi | enaneVi ewCont r ol | er now takes into account
the nested path of the request. This is a breaking change from the origina contract of the
Url Fi | enanmeVi enCont rol | er, and means that if you are upgrading from Spring 1.x to Spring 2.x and you are
using this class you might have to change your Spring Web MV C configuration slightly. Refer to the class level
Javadocs of the UrlFilenameViewController to see examples of the new contract for view name
determination.

2.8. Updated sample applications

A number of the sample applications have also been updated to showcase the new and improved features of
Spring 2.0. So do take the time to investigate them. The aforementioned sample applications can be found in
the' sanpl es' directory of the full Spring distribution (* spri ng-wi t h- dependenci es. [zi p| tar. gz] ").

Spring 2.5 features revised versions of the PetClinic and PetPortal sample applications, reengineered from the
ground up for leveraging Spring 2.5's annotation configuration features. It also uses Java 5 autoboxing,
generics, varargs and the enhanced for loop. A Java 5 or 6 SDK is now required to build and run the sample.
Check out PetClinic and PetPortal to get an impression of what Spring 2.5 has to offer!

2.9. Improved documentation

The Spring reference documentation has also substantially been updated to reflect al of the above features new
in Spring 2.0 and 2.5. While every effort has been made to ensure that there are no errors in this documentation,
some errors may nevertheless have crept in. If you do spot any typos or even more serious errors, and you can
spare afew cycles during lunch, please do bring the error to the attention of the Spring team by raising an issue.

Special thanks to Arthur Loder for his tireless proofreading of the Spring Framework reference documentation
and JavaDocs.

Spring Framework (2.5.6) 30

http://opensource.atlassian.com/projects/spring/

Part |. Core Technologies

This initial part of the reference documentation covers all of those technologies that are absolutely integral to
the Spring Framework.

Foremost amongst these is the Spring Framework's Inversion of Control (10C) container. A thorough treatment
of the Spring Framework's 1oC container is closely followed by comprehensive coverage of Spring's
Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP framework,
which is conceptually easy to understand, and which successfully addresses the 80% sweet spot of AOP
requirements in Java enterprise programming.

Coverage of Spring's integration with AspectJ (currently the richest - in terms of features - and certainly most
mature AOP implementation in the Java enterprise space) is also provided.

Finally, the adoption of the test-driven-development (TDD) approach to software development is certainly
advocated by the Spring team, and so coverage of Spring's support for integration testing is covered (alongside
best practices for unit testing). The Spring team have found that the correct use of 10C certainly does make both
unit and integration testing easier (in that the presence of setter methods and appropriate constructors on classes
makes them easier to wire together on a test without having to set up service locator registries and suchlike)...
the chapter dedicated solely to testing will hopefully convince you of this aswell.

e Chapter 3, The loC container

¢ Chapter 4, Resources

« Chapter 5, Validation, Data-binding, the Beanw apper , and Pr oper t yEdi t or s
e Chapter 6, Aspect Oriented Programming with Spring

e Chapter 7, Soring AOP APIs

» Chapter 8, Testing

Spring Framework (2.5.6) 31

Chapter 3. The loC container

3.1. Introduction

This chapter covers the Spring Framework's implementation of the Inversion of Control (1oC) 1 principle.

BeanFact ory Of Appl i cati onCont ext ?

Users are sometimes unsure whether a BeanFact ory Or an Appl i cat i onCont ext iS best suited for usein a
particular situation. A BeanFactory pretty much just instantiates and configures beans. An
Appl i cationContext also does that, and it provides the supporting infrastructure to enable lots of
enterprise-specific features such as transactions and AOP.

In short, favor the use of an Appl i cat i onCont ext .

(For the specific details behind this recommendation, see this section.)

The org. springframewor k. beans and or g. spri ngf ramewor k. cont ext packages provide the basis for the
Spring Framework's |0C container. The BeanFact ory interface provides an advanced configuration mechanism
capable of managing objects of any nature. The ApplicationContext interface builds on top of the
BeanFactory (it is a sub-interface) and adds other functionality such as easier integration with Spring's AOP
features, message resource handling (for use in internationalization), event propagation, and application-layer
specific contexts such asthe webAppl i cati onCont ext for use in web applications.

In short, the BeanFactory provides the configuration framework and basic functionality, while the
Appl i cati onCont ext adds more enterprise-centric functionality to it. The Appl i cati onCont ext IS a complete
superset of the BeanFact ory, and any description of BeanFact ory capabilities and behavior is to be considered
to apply to the Appl i cati onCont ext aswell.

This chapter is divided into two parts, with the first part covering the basic principles that apply to both the
BeanFact ory and Appl i cati onCont ext , and with the second part covering those features that apply only to the
Appl i cati onCont ext interface.

3.2. Basics - containers and beans

In Spring, those objects that form the backbone of your application and that are managed by the Spring 10C
container are referred to as beans. A bean is simply an object that is instantiated, assembled and otherwise
managed by a Spring 10C container; other than that, there is nothing special about a bean (it is in all other
respects one of probably many objects in your application). These beans, and the dependencies between them,
are reflected in the configuration metadata used by a container.

Why... bean?

The motivation for using the name 'bean’, as opposed to ‘component’ or 'object’ is rooted in the origins of
the Spring Framework itself (it arose partly as a response to the complexity of Enterprise JavaBeans).

1See the section entitled Background

Spring Framework (2.5.6) 32

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/BeanFactory.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/ApplicationContext.html

The 1oC container

3.2.1. The container

The org. springfranmewor k. beans. factory. BeanFactory IS the actual representation of the Spring 10C
container that is responsible for containing and otherwise managing the aforementioned beans.

The BeanFactory interface is the central 10C container interface in Spring. Its responsibilities include
instantiating or sourcing application objects, configuring such objects, and assembling the dependencies
between these objects.

There are a number of implementations of the BeanFact ory interface that come supplied straight out-of-the-box
with Spring. The most commonly used BeanFactory implementation is the Xm BeanFactory class. This
implementation allows you to express the objects that compose your application, and the doubtless rich
interdependencies between such objects, in terms of XML. The Xni BeanFact ory takes this XML configuration
metadata and uses it to create a fully configured system or application.

Your Business Objects (PO.JOs)

» The Sprin
Configuration Cuntapine:’g
Metadata
oroduces

Fully configured system

Ready for Use

The Spring 1oC container

3.2.1.1. Configuration metadata

As can be seen in the above image, the Spring |10C container consumes some form of configuration metadata;
this configuration metadata is nothing more than how you (as an application developer) inform the Spring
container as to how to “instantiate, configure, and assemble [the objects in your application]”. This
configuration metadata is typically supplied in a simple and intuitive XML format. When using XM L-based
configuration metadata, you write bean definitions for those beans that you want the Spring 10C container to
manage, and then let the container do its stuff.

Note
e

XML-based metadata is by far the most commonly used form of configuration metadata. It is not
however the only form of configuration metadata that is allowed. The Spring 10C container itself is
totally decoupled from the format in which this configuration metadata is actually written. The

Spring Framework (2.5.6) 33

The 1oC container

XML-based configuration metadata format really is ssimple though, and so the mgjority of this
chapter will use the XML format to convey key concepts and features of the Spring 10C container.

You can find details of another form of metadata that the Spring container can consume in the
section entitled Section 3.11, “ Annotation-based configuration”

Resources

The location path or paths supplied to an Appl i cat i onCont ext constructor are actually resource strings
that allow the container to load configuration metadata from a variety of externa resources such as the
local file system, from the Java CLASSPATH, €tc.

Once you have learned about Spring's |oC container, you may wish to learn a little more about Spring's
Resour ce abstraction, as described in the chapter entitled Chapter 4, Resources.

In the vast majority of application scenarios, explicit user code is not required to instantiate one or more
instances of a Spring 10C container. For example, in a web application scenario, a simple eight (or so) lines of
boilerplate J2EE web descriptor XML in the web. xm file of the application will typically suffice (see
Section 3.8.5, “Convenient Appl i cat i onCont ext instantiation for web applications”).

Spring configuration consists of at least one bean definition that the container must manage, but typically there
will be more than one bean definition. When using XML-based configuration metadata, these beans are
configured as <bean/ > elements inside atop-level <beans/ > element.

These bean definitions correspond to the actual objects that make up your application. Typically you will have
bean definitions for your service layer objects, your data access objects (DAOs), presentation objects such as
Struts Act i on instances, infrastructure objects such as Hibernate Sessi onFact ori es, IMS Queues, and so forth.
Typicaly one does not configure fine-grained domain objects in the container, because it is usualy the
responsibility of DAOs and business logic to create/l oad domain objects.

Find below an example of the basic structure of XML-based configuration metadata.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
ht t p: // ww. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd" >

<bean id="..." class="...">
<!-- collaborators and configuration for this bean go here -->
</ bean>
<bean id="..." class="...">
<!-- collaborators and configuration for this bean go here -->
</ bean>
<I-- nore bean definitions go here -->
</ beans>

3.2.2. Instantiating a container

Instantiating a Spring 10C container is straightforward.

Appl i cati onCont ext context = new C assPat hXm Appl i cati onCont ext (
new String[] {"services.xm", "daos.xm"});

Spring Framework (2.5.6) 34

The 1oC container

/] an ApplicationContext i S al so a BeanFactory (Vi a inheritance)
BeanFactory factory = context;

3.2.2.1. Composing XML-based configuration metadata

It can often be useful to split up container definitions into multiple XML files. One way to then load an
application context which is configured from all these XML fragments is to use the application context
constructor which takes multiple Resour ce locations. With a bean factory, a bean definition reader can be used
multiple times to read definitions from each filein turn.

Generaly, the Spring team prefers the above approach, since it keeps container configuration files unaware of
the fact that they are being combined with others. An alternate approach is to use one or more occurrences of
the <i mpor t / > element to load bean definitions from another file (or files). Let'slook at a sample:

<beans>
<i nport resource="services.xm"/>

<i mport resource="resources/ messageSource. xm "/ >
<i nmport resource="/resources/themeSource. xm "/ >

<bean i d="beanl" class="..."/>
<bean i d="bean2" class="..."/>
</ beans>

In this example, externa bean definitions are being loaded from 3 files, servi ces. xm , messageSour ce. xni ,
and t hemeSour ce. xm . All location paths are considered relative to the definition file doing the importing, so
servi ces. xnl in this case must be in the same directory or classpath location as the file doing the importing,
while nessageSource. xni and t hemeSour ce. xmi must be in aresources location below the location of the
importing file. As you can see, aleading slash is actually ignored, but given that these are considered relative
paths, it is probably better form not to use the slash at all. The contents of the files being imported must be valid
XML bean definition files according to the Spring Schema or DTD, including the top level <beans/ > element.

Note
e

It is possible to reference files in parent directories using arelative "../" path. However, thisis not
recommended because it creates a dependency on afile that is outside the current application. This
isin particular not recommended for "classpath:" URLSs (e.g. "classpath:../services.xml") where the
runtime resolution process will pick the "nearest" classpath root and then look into its parent
directory. This is fragile since classpath configuration changes may lead to a different directory
being picked.

Note that you can always use fully qualified resource locations instead of relative paths. e.g.
"file:C:/config/servicesxml" or "classpath:/config/servicesxml”. However, be aware that you are
coupling your application's configuration to specific absolute locations then. It is generally
preferable to keep an indirection for such absolute locations, e.g. through "${ ...} " placeholders that
areresolved against VM system properties at runtime.

3.2.3. The beans

A Spring 1oC container manages one or more beans. These beans are created using the configuration metadata
that has been supplied to the container (typicaly in the form of XML <bean/ > definitions).

Within the container itself, these bean definitions are represented as BeanDef i ni ti on objects, which contain

Spring Framework (2.5.6) 35

The 1oC container

(among other information) the following metadata:

a package-qualified class name: typicaly thisisthe actual implementation class of the bean being defined.

» bean behaviora configuration elements, which state how the bean should behave in the container (scope,

lifecycle callbacks, and so forth).

» references to other beans which are needed for the bean to do its work; these references are also called

collaborators or dependencies.

« other configuration settings to set in the newly created object. An example would be the number of

connections to use in a bean that manages a connection pool, or the size limit of the pool.

The concepts listed above directly translate to a set of properties that each bean definition consists of. Some of

these properties are listed below, along with alink to further documentation about each of them.

Table 3.1. The bean definition

Feature

class

name

scope

constructor arguments

properties

autowiring mode

dependency checking mode

lazy-initialization mode

initialization method

destruction method

Explained in...

Section 3.2.3.2, “Instantiating beans’

Section 3.2.3.1, “Naming beans’

Section 3.4, “Bean scopes’

Section 3.3.1, “Injecting dependencies’

Section 3.3.1, “Injecting dependencies’

Section 3.3.5, “Autowiring collaborators’

Section 3.3.6, “ Checking for dependencies’

Section 3.3.4, “Lazily-instantiated beans’

Section 3.5.1.1, “Initialization callbacks’

Section 3.5.1.2, “Destruction callbacks’

Besides bean definitions which contain information on how to create a specific bean, certain BeanFact ory
implementations also permit the registration of existing objects that have been created outside the factory (by
user code). The Def aul tLi st abl eBeanFactory class supports this through the registerSingleton(..)

method. (Typical applications solely work with beans defined through metadata bean definitions though.)

3.2.3.1. Naming beans

Spring Framework (2.5.6)

36

The 1oC container

Bean naming conventions

The convention (at least amongst the Spring development team) is to use the standard Java convention for
instance field names when naming beans. That is, bean names start with a lowercase letter, and are
camel-cased from then on. Examples of such names would be (without quotes) ' account Manager' ,
"account Service',' userDao','loginController',and soforth.

Adopting a consistent way of naming your beans will go along way towards making your configuration
easier to read and understand; adopting such naming standards is not hard to do, and if you are using
Spring AOP it can pay off handsomely when it comes to applying advice to a set of beans related by
name.

Every bean has one or more i ds (also called identifiers, or names; these terms refer to the same thing). These
i ds must be unique within the container the bean is hosted in. A bean will aimost always have only one id, but
if abean has more than one id, the extra ones can essentially be considered aliases.

When using XML-based configuration metadata, you use the *id' or ' nanme' attributes to specify the bean
identifier(s). The 'id' attribute allows you to specify exactly one id, and as it is a real XML element 1D
attribute, the XML parser is able to do some extra validation when other elements reference the id; as such, it is
the preferred way to specify a bean id. However, the XML specification does limit the characters which are
legal in XML IDs. This is usually not a constraint, but if you have a need to use one of these special XML
characters, or want to introduce other aliases to the bean, you may also or instead specify one or more beani ds,
separated by acomma (,), semicolon (;), or whitespace in the' narme' attribute.

Please note that you are not required to supply a name for a bean. If no name is supplied explicitly, the
container will generate a unique name for that bean. The motivations for not supplying a name for a bean will
be discussed later (one use case isinner beans).

3.2.3.1.1. Aliasing beans

In a bean definition itself, you may supply more than one name for the bean, by using a combination of up to
one name specified viathei d attribute, and any number of other names via the nane attribute. All these names
can be considered equivalent aliases to the same bean, and are useful for some situations, such as allowing each
component used in an application to refer to a common dependency using a bean name that is specific to that
component itself.

Having to specify all aiases when the bean is actually defined is not always adequate however. It is sometimes
desirable to introduce an alias for a bean which is defined elsewhere. In XML-based configuration metadata
this may be accomplished viathe use of the <al i as/ > element.

<al i as nanme="fronmNane" alias="toNane"/>

In this case, a bean in the same container which is named ' fronNane' , may also after the use of this alias
definition, bereferred to as' t oNane' .

As a concrete example, consider the case where component A defines a DataSource bean called
componentA-dataSource, in its XML fragment. Component B would however like to refer to the DataSource as
componentB-dataSource in its XML fragment. And the main application, MyApp, defines its own XML
fragment and assembles the final application context from al three fragments, and would like to refer to the
DataSource as myApp-dataSource. This scenario can be easily handled by adding to the MyApp XML
fragment the following standal one aliases:

Spring Framework (2.5.6) 37

The 1oC container

<al i as nanme="conponent A- dat aSour ce" al i as="conponent B- dat aSour ce"/ >
<al i as nane="conponent A- dat aSour ce" al i as="nyApp-dat aSource" />

Now each component and the main application can refer to the dataSource via a name that is unique and
guaranteed not to clash with any other definition (effectively there is a namespace), yet they refer to the same
bean.

3.2.3.2. Instantiating beans

Inner class names

If for whatever reason you want to configure a bean definition for ast ati ¢ inner class, you have to use
the binary name of the inner class.

For example, if you have a class called Foo in the com exanpl e package, and this Foo classhasastati c
inner class called Bar , the value of the' cl ass' attribute on a bean definition would be...

com exanpl e. Foo$Bar

Notice the use of the $ character in the name to separate the inner class name from the outer class name.

A bean definition essentially is arecipe for creating one or more objects. The container looks at the recipe for a
named bean when asked, and uses the configuration metadata encapsulated by that bean definition to create (or
acquire) an actual object.

If you are using XML-based configuration metadata, you can specify the type (or class) of object that is to be
instantiated using the ' cl ass' attribute of the <bean/> element. This ' cl ass' attribute (which internally
eventually boils down to being a d ass property on a BeanDefi ni ti on instance) is normally mandatory (see
Section 3.2.3.2.3, “Instantiation using an instance factory method” and Section 3.6, “Bean definition
inheritance” for the two exceptions) and is used for one of two purposes. The class property specifies the class
of the bean to be constructed in the common case where the container itself directly creates the bean by calling
its constructor reflectively (somewhat equivalent to Java code using the 'new' operator). In the less common
case where the container invokes a st ati ¢, factory method on a class to create the bean, the class property
specifies the actual class containing the st ati ¢ factory method that is to be invoked to create the object (the
type of the object returned from the invocation of the st ati ¢ factory method may be the same class or another
class entirely, it doesn't matter).

3.2.3.2.1. Instantiation using a constructor

When creating a bean using the constructor approach, all normal classes are usable by and compatible with
Spring. That is, the class being created does not need to implement any specific interfaces or be coded in a
specific fashion. Just specifying the bean class should be enough. However, depending on what type of 10C you
are going to use for that specific bean, you may need a default (empty) constructor.

Additionally, the Spring 10C container isn't limited to just managing true JavaBeans, it is also able to manage
virtually any class you want it to manage. Most people using Spring prefer to have actual JavaBeans (having
just a default (no-argument) constructor and appropriate setters and getters modeled after the properties) in the
container, but it is also possible to have more exotic non-bean-style classes in your container. If, for example,
you need to use a legacy connection pool that absolutely does not adhere to the JavaBean specification, Spring
can manage it aswell.

When using XML -based configuration metadata you can specify your bean class like so:

Spring Framework (2.5.6) 38

The 1oC container

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"/ >

<bean name="anot her Exanpl e" cl ass="exanpl es. Exanpl eBeanTwo"/ >

The mechanism for supplying arguments to the constructor (if required), or setting properties of the object
instance after it has been constructed, is described shortly.

3.2.3.2.2. Instantiation using a static factory method

When defining a bean which isto be created using a static factory method, along with the cl ass attribute which
specifies the class containing the st at i ¢ factory method, another attribute named f act or y- net hod is needed to
specify the name of the factory method itself. Spring expects to be able to call this method (with an optional list
of arguments as described later) and get back alive object, which from that point on is treated as if it had been
created normally via a constructor. One use for such a bean definition isto call st at i ¢ factoriesin legacy code.

The following example shows a bean definition which specifies that the bean is to be created by calling a
factory-method. Note that the definition does not specify the type (class) of the returned object, only the class
containing the factory method. In this example, the cr eat el nst ance() method must be a static method.

<bean i d="exanpl eBean"
cl ass="exanpl es. Exanpl eBean2"
factory- met hod="creat el nst ance"/ >

The mechanism for supplying (optional) arguments to the factory method, or setting properties of the object
instance after it has been returned from the factory, will be described shortly.

3.2.3.2.3. Instantiation using an instance factory method

In afashion similar to instantiation via a static factory method, instantiation using an instance factory method is
where a non-static method of an existing bean from the container is invoked to create a new bean. To use this
mechanism, the ' cl ass' attribute must be left empty, and the' f act ory- bean' attribute must specify the name
of abean in the current (or parent/ancestor) container that contains the instance method that is to be invoked to
create the object. The name of the factory method itself must be set using the' f act ory- net hod' attribute.

<I-- the factory bean, which contains a method called createlnstance() -->
<bean i d="servi ceLocator" class="com foo. Def aul t Servi ceLocat or">

<I'-- inject any dependencies required by this |ocator bean -->
</ bean>

<l-- the bean to be created via the factory bean -->
<bean i d="exanpl eBean"

factory-bean="servi ceLocat or"

factory- met hod="creat el nst ance"/ >

Although the mechanisms for setting bean properties are still to be discussed, one implication of this approach
isthat the factory bean itself can be managed and configured viaDI.

Note

“a
When the Spring documentation makes mention of a ‘factory bean', this will be a reference to a
bean that is configured in the Spring container that will create objects via an instance or static
factory method. When the documentation mentions a Fact or yBean (notice the capitalization) thisis
areference to a Spring-specific Fact or yBean .

3.2.4. Using the container

Spring Framework (2.5.6) 39

The 1oC container

A BeanFact ory is essentially nothing more than the interface for an advanced factory capable of maintaining a
registry of different beans and their dependencies. The BeanFact ory enables you to read bean definitions and
access them using the bean factory. When using just the BeanFact ory you would create one and read in some
bean definitions in the XML format as follows:

Resource res = new Fil eSyst emResour ce("beans. xm ") ;
BeanFactory factory = new Xm BeanFactory(res);

Basically that is al there is to it. Using get Bean(String) Yyou can retrieve instances of your beans,; the
client-side view of the BeanFactory is simple. The BeanFact ory interface has just a few other methods, but
ideally your application code should never use them... indeed, your application code should have no callsto the
get Bean(String) method at all, and thus no dependency on Spring APIs at all.

3.3. Dependencies

Y our typical enterprise application is not made up of a single object (or bean in the Spring parlance). Even the
simplest of applications will no doubt have at least a handful of objects that work together to present what the
end-user sees as a coherent application. This next section explains how you go from defining a number of bean
definitions that stand-alone, each to themselves, to a fully realized application where objects work (or
collaborate) together to achieve some goal (usually an application that does what the end-user wants).

3.3.1. Injecting dependencies

The basic principle behind Dependency Injection (DI) is that objects define their dependencies (that is to say
the other objects they work with) only through constructor arguments, arguments to a factory method, or
properties which are set on the object instance after it has been constructed or returned from a factory method.
Then, it is the job of the container to actually inject those dependencies when it creates the bean. This is
fundamentally the inverse, hence the name Inversion of Control (I0C), of the bean itself being in control of
instantiating or locating its dependencies on its own using direct construction of classes, or something like the
Service Locator pattern.

It becomes evident upon usage that code gets much cleaner when the DI principle is applied, and reaching a
higher grade of decoupling is much easier when objects do not look up their dependencies, but are provided
with them (and additionally do not even know where the dependencies are located and of what concrete class
they are). DI existsin two major variants, namely Constructor Injection and Setter Injection.

3.3.1.1. Constructor Injection

Constructor-based DI is effected by invoking a constructor with a number of arguments, each representing a
dependency. Additionally, calling a st ati ¢ factory method with specific arguments to construct the bean, can
be considered almost equivalent, and the rest of this text will consider arguments to a constructor and
arguments to a static factory method similarly. Find below an example of a class that could only be
dependency injected using constructor injection. Notice that there is nothing special about this class.

public class SinpleMuvielLister {

/] the sinpleMvieLister has a dependency on a MovieFinder
private Movi eFi nder novi eFi nder;

// a constructor so that the Spring container can 'inject' a MvieFinder

public Sinpl eMvi elLi ster(Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;
}

/1 business logic that actually 'uses' the injected MvieFinder is omtted...

Spring Framework (2.5.6) 40

The 1oC container

3.3.1.1.1. Constructor Argument Resolution

Constructor argument resolution matching occurs using the argument's type. If there is no potentia for
ambiguity in the constructor arguments of a bean definition, then the order in which the constructor arguments
are defined in a bean definition is the order in which those arguments will be supplied to the appropriate
constructor when it is being instantiated. Consider the following class:

package x.y;
public class Foo {

public Foo(Bar bar, Baz baz) {
...
}

There is no potential for ambiguity here (assuming of course that Bar and Baz classes are not related in an
inheritance hierarchy). Thus the following configuration will work just fine, and you do not need to specify the
constructor argument indexes and / or types explicitly.

<beans>
<bean name="foo" class="x.y.Foo">
<constructor-arg>
<bean cl ass="x.y.Bar"/>
</ constructor-arg>
<constructor - ar g>
<bean cl ass="x.y.Baz"/>
</ constructor-arg>
</ bean>
</ beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with the
preceding example). When a simple type is used, such as <val ue>t r ue<val ue>, Spring cannot determine the
type of the value, and so cannot match by type without help. Consider the following class:

package exanpl es;

public class Exanpl eBean {

/1 No. of years to the calculate the Utinate Answer
private int years

/1 The Answer to Life, the Universe, and Everything
private String ultimateAnswer;

publi ¢ Exanpl eBean(int years, String ultimteAnswer) {
this.years = years
this.ultimteAnswer = ultimateAnswer;

3.3.1.1.1.1. Constructor Argument Type Matching

The above scenario can use type matching with simple types by explicitly specifying the type of the constructor
argument using the' t ype' attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg type="int" val ue="7500000"/>
<constructor-arg type="java.lang. String" val ue="42"/>
</ bean>

Spring Framework (2.5.6) 41

The 1oC container

3.3.1.1.1.2. Constructor Argument Index

Constructor arguments can have their index specified explicitly by use of thei ndex attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg index="0" val ue="7500000"/>
<constructor-arg index="1" val ue="42"/>

</ bean>

As well as solving the ambiguity problem of multiple simple values, specifying an index also solves the
problem of ambiguity where a constructor may have two arguments of the same type. Note that the index is 0
based.

3.3.1.2. Setter Injection

Setter-based DI isrealized by calling setter methods on your beans after invoking a no-argument constructor or
no-argument st at i ¢ factory method to instantiate your bean.

Find below an example of a class that can only be dependency injected using pure setter injection. Note that
there is nothing special about this class... it isplain old Java.
public class SinpleMvielister {

/'l the sinplemwvieLister has a dependency on the MvieFi nder
private MyvieFi nder novi eFi nder;

// a setter method so that the Spring container can 'inject' a MvieFinder

public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;
}

/1 business logic that actually 'uses' the injected mvieFinder i s omtted...

Constructor- or Setter-based DI?

The Spring team generally advocates the usage of setter injection, since a large number of constructor
arguments can get unwieldy, especially when some properties are optional. The presence of setter
methods also makes objects of that class amenable to being re-configured (or re-injected) at some later
time (for management via JMX MBeansis a particularly compelling use case).

Constructor-injection is favored by some purists though (and with good reason). Supplying all of an
object's dependencies means that that object is never returned to client (calling) code in aless than totally
initialized state. The flip side is that the object becomes less amenable to re-configuration (or
re-injection).

There is no hard and fast rule here. Use whatever type of DI makes the most sense for a particular class;
sometimes, when dealing with third party classes to which you do not have the source, the choice will
already have been made for you - a legacy class may not expose any setter methods, and so constructor
injection will be the only type of DI available to you.

The BeanFact ory supports both of these variants for injecting dependencies into beans it manages. (It in fact
also supports injecting setter-based dependencies after some dependencies have already been supplied via the
constructor approach.) The configuration for the dependencies comes in the form of a BeanDef i ni ti on, which
is used together with Proper t yEdi t or instances to know how to convert properties from one format to another.
However, most users of Spring will not be dealing with these classes directly (that is programmatically), but

Spring Framework (2.5.6) 42

The 1oC container

rather with an XML definition file which will be converted internally into instances of these classes, and used
to load an entire Spring |oC container instance.

Bean dependency resolution generally happens as follows:

1. The BeanFact ory is created and initialized with a configuration which describes all the beans. (Most Spring
USErs use a BeanFact ory OF Appl i cati onCont ext implementation that supports XML format configuration
files)

2. Each bean has dependencies expressed in the form of properties, constructor arguments, or arguments to the
static-factory method when that is used instead of a normal constructor. These dependencies will be
provided to the bean, when the bean is actually created.

3. Each property or constructor argument is either an actual definition of the value to set, or a reference to
another bean in the container.

4. Each property or constructor argument which is a value must be able to be converted from whatever format
it was specified in, to the actual type of that property or constructor argument. By default Spring can convert
avalue supplied in string format to al built-in types, such asi nt, | ong, St ri ng, bool ean, €tC.

The Spring container validates the configuration of each bean as the container is created, including the
validation that properties which are bean references are actualy referring to valid beans. However, the bean
properties themselves are not set until the bean is actually created. For those beans that are singleton-scoped
and set to be pre-instantiated (such as singleton beansin an Appl i cat i onCont ext), creation happens at the time
that the container is created, but otherwise thisis only when the bean is requested. When a bean actually has to
be created, this will potentially cause a graph of other beans to be created, as its dependencies and its
dependencies dependencies (and so on) are created and assigned.

Circular dependencies

If you are using predominantly constructor injection it is possible to write and configure your classes and
beans such that an unresolvable circular dependency scenario is created.

Consider the scenario where you have class A, which requires an instance of class B to be provided via
constructor injection, and class B, which requires an instance of class A to be provided via constructor
injection. If you configure beans for classes A and B to be injected into each other, the Spring 10C
container will detect this circular reference at runtime, and throw a
BeanCurrent |yl nCreati onExcepti on.

One possible solution to this issue is to edit the source code of some of your classes to be configured via
setters instead of via constructors. Another solution is not to use constructor injection and stick to setter
injection only. In other words, while it should generally be avoided in al but the rarest of circumstances,
it is possible to configure circular dependencies with setter injection.

Unlike the typical case (with no circular dependencies), a circular dependency between bean A and bean
B will force one of the beans to be injected into the other prior to being fully initialized itself (a classic
chicken/egg scenario).

Y ou can generally trust Spring to do the right thing. It will detect misconfiguration issues, such as references to
non-existent beans and circular dependencies, at container load-time. It will actually set properties and resolve
dependencies as late as possible, which is when the bean is actually created. This means that a Spring container
which has loaded correctly can later generate an exception when you request a bean if there is a problem
creating that bean or one of its dependencies. This could happen if the bean throws an exception as aresult of a

Spring Framework (2.5.6) 43

The 1oC container

missing or invalid property, for example. This potentially delayed visibility of some configuration issuesiswhy
Appl i cati onCont ext implementations by default pre-instantiate singleton beans. At the cost of some upfront
time and memory to create these beans before they are actually needed, you find out about configuration issues
when the Appl i cat i onCont ext iscreated, not later. If you wish, you can still override this default behavior and
set any of these singleton beans to lazy-initiaize (that is not be pre-instantiated).

If no circular dependencies are involved (see sidebar for a discussion of circular dependencies), when one or
more collaborating beans are being injected into a dependent bean, each collaborating bean is totally configured
prior to being passed (via one of the DI flavors) to the dependent bean. This means that if bean A has a
dependency on bean B, the Spring 1oC container will totally configure bean B prior to invoking the setter
method on bean A; you can read 'totally configure' to mean that the bean will be instantiated (if not a
pre-instantiated singleton), all of its dependencies will be set, and the relevant lifecycle methods (such as a
configured init method or the IntializingBean callback method) will all be invoked.

3.3.1.3. Some examples

First, an example of using XML-based configuration metadata for setter-based DI. Find below a small part of a
Spring XML configuration file specifying some bean definitions.

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >

<I-- setter injection using the nested <ref/> el emrent -->
<property name="beanOne"><ref bean="anot her Exanpl eBean"/ ></ property>

<I-- setter injection using the neater 'ref' attribute -->
<property name="beanTwo" ref="yet Anot her Bean"/>
<property name="integerProperty" val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public cl ass Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

public void set BeanOne(Anot her Bean beanOne) {
thi s. beanOne = beanOne
}

public void set BeanTwo(Yet Anot her Bean beanTwo) {
this. beanTwo = beanTwo;
}

public void setlntegerProperty(int i) {
this.i =i;
}

As you can see, setters have been declared to match against the properties specified in the XML file. Find
below an example of using constructor-based DI.
<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<l-- constructor injection using the nested <ref/> el ement -->
<const ruct or - ar g>
<ref bean="anot her Exanpl eBean"/>

</ constructor-arg>

<l-- constructor injection using the neater 'ref' attribute -->
<constructor-arg ref="yet Anot her Bean"/ >

<constructor-arg type="int" val ue="1"/>

Spring Framework (2.5.6) 44

The 1oC container

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

publ i ¢ Exanpl eBean(
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
thi s. beanOne = anot her Bean;
t hi s. beanTwo = yet Anot her Bean;
this.i =1i;

Asyou can see, the constructor arguments specified in the bean definition will be used to passin as arguments
to the constructor of the Exanpl eBean.

Now consider a variant of this where instead of using a constructor, Spring is told to cal a static factory
method to return an instance of the object:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"
factory- met hod="cr eat el nst ance" >
<constructor-arg ref="anot her Exanpl eBean"/ >
<constructor-arg ref="yet Anot her Bean"/ >
<constructor-arg val ue="1"/>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

/'l a private constructor
private ExanpleBean(...) {

i

// a static factory nethod; the argunments to this nethod can be
/'l considered the dependencies of the bean that is returned,
/'l regardl ess of how those argunents are actually used.
public static Exanpl eBean createl nstance (
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {

Exanpl eBean eb = new Exanpl eBean (...);
// some other operations...
return eb;

Note that arguments to the st at i ¢ factory method are supplied via <const r uct or - ar g/ > elements, exactly the
same as if a constructor had actually been used. Also, it is important to realize that the type of the class being
returned by the factory method does not have to be of the same type as the class which contains the stati c
factory method, although in this example it is. An instance (non-static) factory method would be used in an
essentially identical fashion (aside from the use of the f act or y- bean attribute instead of the cl ass attribute), so
details will not be discussed here.

3.3.2. Dependencies and configuration in detail

As mentioned in the previous section, bean properties and constructor arguments can be defined as either

Spring Framework (2.5.6) 45

The 1oC container

references to other managed beans (collaborators), or values defined inline. Spring's XML-based configuration
metadata supports a number of sub-element types within its <property/> and <const ruct or - ar g/ > €elements
for just this purpose.

3.3.2.1. Straight values (primitives, stri ngs, etc.)

The <val ue/ > element specifies a property or constructor argument as a human-readable string representation.
As mentioned previously, JavaBeans Pr oper t yEdi t or s are used to convert these string valuesfromastri ng to
the actual type of the property or argument.

<bean i d="nyDat aSour ce" cl ass="or g. apache. commons. dbcp. Basi cDat aSour ce" destroy-net hod="cl ose">

<l-- results in a setDriverCassNane(String) call -->
<property nanme="driverd assNane" >
<val ue>com nysql . j dbc. Dri ver </ val ue>
</ property>
<property name="url">
<val ue>j dbc: nysql : / /1 ocal host : 3306/ nydb</ val ue>
</ property>
<property name="user nanme">
<val ue>r oot </ val ue>
</ property>
<property nanme="password">
<val ue>nast er kaol i </ val ue>
</ property>
</ bean>

The <property/ > and <const ruct or - ar g/ > elements aso support the use of the ' val ue' attribute, which can
lead to much more succinct configuration. When using the * val ue' attribute, the above bean definition reads
like so:

<bean i d="nyDat aSour ce" cl ass="or g. apache. commons. dbcp. Basi cDat aSour ce" destroy-net hod="cl ose">

<l-- results in a setDriverCassNane(String) call -->
<property name="driverC assNane" val ue="com nysql . jdbc. Driver"/>
<property name="url" val ue="j dbc: mysql :// | ocal host: 3306/ nydb"/ >
<property name="user nane" val ue="root"/>
<property name="password" val ue="nasterkaoli"/>

</ bean>

The Spring team generaly prefer the attribute style over the use of nested <val ue/ > elements. If you are
reading this reference manual straight through from top to bottom (wow!) then we are getting dightly ahead of
ourselves here, but you can also configureaj ava. util . Properti es instance like so:

<bean i d="mappi ngs" cl ass="org. spri ngframewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">

<I-- typed as a java.util.Properties -->
<property name="properties">
<val ue>

jdbc.driver.className=com nysql . j dbc. Dri ver
jdbc. url =j dbc: nysql : //1 ocal host : 3306/ nydb
</val ue>
</ property>
</ bean>

Can you see what is happening? The Spring container is converting the text inside the <val ue/ > element into a
java.util.Properties instance using the JavaBeans Pr opert yEdi t or mechanism. Thisis a nice shortcut, and
is one of afew places where the Spring team do favor the use of the nested <val ue/ > element over the' val ue'
atribute style.

3.3.2.1.1. The idref element

Spring Framework (2.5.6) 46

The 1oC container

The idref element is simply an error-proof way to pass the id of another bean in the container (to a
<const ruct or - ar g/ > Or <pr oper t y/ > element).

<bean id="t heTarget Bean" class="..."/>

<bean i d="t heC i ent Bean" class="...">
<property name="t ar get Nane">
<i dref bean="theTar get Bean" />
</ property>
</ bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:

<bean id="t heTarget Bean" class="..." />

<bean id="client" class="...">
<property name="t arget Nane" val ue="t heTar get Bean" />
</ bean>

The main reason the first form is preferable to the second is that using the i dref tag allows the container to
validate at deployment time that the referenced, named bean actually exists. In the second variation, no
validation is performed on the value that is passed to the ' t ar get Nane' property of the ' client' bean. Any
typo will only be discovered (with most likely fatal results) when the' cli ent' bean is actually instantiated. If
the ' client' bean is a prototype bean, this typo (and the resulting exception) may only be discovered long
after the container is actually deployed.

Additionally, if the bean being referred to is in the same XML unit, and the bean name is the bean id, the
"l ocal ' attribute may be used, which allows the XML parser itself to validate the bean id even earlier, at XML
document parse time.

<property name="t ar get Nane">
<l-- a bean with an id of 'theTargetBean' nust exist; otherwi se an XM. exception will be thrown -->
<idref |ocal ="t heTar get Bean"/>

</ property>

By way of an example, one common place (at least in pre-Spring 2.0 configuration) where the <idref/> element
brings value is in the configuration of AOP interceptors in a ProxyFact or yBean bean definition. If you use
<idref/> elements when specifying the interceptor names, there is no chance of inadvertently misspelling an
interceptor id.

3.3.2.2. References to other beans (collaborators)

Theref element isthe final element allowed inside a <constructor-ar g/ > Or <pr opert y/ > definition element.
It is used to set the value of the specified property to be areference to another bean managed by the container (a
collaborator). As mentioned in a previous section, the referred-to bean is considered to be a dependency of the
bean who's property is being set, and will be initialized on demand as needed (if it is a singleton bean it may
have already been initialized by the container) before the property is set. All references are ultimately just a
reference to another object, but there are 3 variations on how the id/name of the other object may be specified,
which determines how scoping and validation is handled.

Specifying the target bean by using the bean attribute of the <r ef / > tag is the most general form, and will allow
creating a reference to any bean in the same container (whether or not in the same XML file), or parent
container. The value of the ' bean' attribute may be the same as either the ' i d' attribute of the target bean, or
one of thevaluesin the' nane' attribute of the target bean.

<ref bean="soneBean"/>

Spring Framework (2.5.6) a7

The 1oC container

Specifying the target bean by using thel ocal attribute leverages the ability of the XML parser to validate XML
id references within the same file. The value of the | ocal attribute must be the same as the i d attribute of the
target bean. The XML parser will issue an error if no matching element is found in the samefile. As such, using
the local variant is the best choice (in order to know about errors as early as possible) if the target bean isin the
same XML file.

<ref |ocal ="soneBean"/>

Specifying the target bean by using the* parent* attribute allows a reference to be created to a bean which isin
a parent container of the current container. The value of the ' parent' attribute may be the same as either the
"id attribute of the target bean, or one of the values in the ' nane' attribute of the target bean, and the target
bean must be in a parent container to the current one. The main use of this bean reference variant is when you
have a hierarchy of containers and you want to wrap an existing bean in a parent container with some sort of
proxy which will have the same name as the parent bean.

<I-- in the parent context -->

<bean i d="account Servi ce" class="com foo. Si npl eAccount Servi ce">
<I-- insert dependencies as required as here -->

</ bean>

<l-- in the child (descendant) context -->

<bean i d="account Service" <-- notice that the nane of this bean is the sane as the nane of the 'parent’

cl ass="org. spri ngf ramewor k. aop. f r amewor k. Pr oxyFact or yBean" >
<property nanme="target">
<ref parent="account Service"/> <-- notice how we refer to the parent bean
</ property>
<I-- insert other configuration and dependenci es as required as here -->
</ bean>

3.3.2.3. Inner beans

A <bean/ > element inside the <property/> Or <constructor-arg/ > elements is used to define a so-called
inner bean. An inner bean definition does not need to have any id or name defined, and it is best not to even
specify any id or name value because the id or name value ssimply will be ignored by the container.

<bean id="outer" class="...">
<l-- instead of using a reference to a target bean, sinply define the target bean inline -->
<property name="target">
<bean cl ass="com exanpl e. Person"> <!-- this is the inner bean -->

<property nanme="nanme" val ue="Fi ona Apple"/>
<property name="age" val ue="25"/>
</ bean>
</ property>
</ bean>

Note that in the specific case of inner beans, the ' scope' flagand any 'id' or' nane' attribute are effectively
ignored. Inner beans are always anonymous and they are always scoped as prototypes. Please also note that it is
not possible to inject inner beans into collaborating beans other than the enclosing bean.

3.3.2.4. Collections

The<list/>, <set/>, <map/ >, and <pr ops/ > elements allow properties and arguments of the Java Col | ecti on
typeLLi st, Set, Map, and Properti es, respectively, to be defined and set.

<bean i d="nor eConpl exCbj ect” cl ass="exanpl e. Conpl exhj ect ">

<l-- results in a set Adm nEmai |l s(java.util.Properties) call -->
<property name="adm nEnail s">
<props>

<prop key="adm ni strator">adm ni strator @xanpl e. or g</ prop>

Spring Framework (2.5.6) 48

bean

The 1oC container

<prop key="support">support @xanpl e. or g</ pr op>
<prop key="devel opnment " >devel opnment @xanpl e. or g</ pr op>

</ props>
</ property>
<l-- results in a setSoneList(java.util.List) call -->
<property nanme="soneList">

<list>

<val ue>a list elenent foll owed by a reference</val ue>
<ref bean="nyDat aSource" />

</list>
</ property>
<l-- results in a setSoneMap(java.util.mvap) call -->
<property name="sonmeMap">
<map>
<entry>
<key>
<val ue>an entry</val ue>
</ key>
<val ue>j ust some string</val ue>
</entry>
<entry>
<key>
<val ue>a ref</val ue>
</ key>
<ref bean="nyDat aSource" />
</entry>
</ map>
</ property>
<l-- results in a setSoneSet (java.util.Set) call -->
<property name="soneSet">
<set >

<val ue>j ust some string</val ue>
<ref bean="nyDat aSource" />
</set>
</ property>
</ bean>

Note

The nested element style used thisinitial example tends to become quite verbose. Fortunately, there
are attribute shortcuts for most elements, which you can read about in Section 3.3.2.6, “ Shortcuts
and other convenience options for XM L-based configuration metadata’ .

Note that the value of a map key or value, or a set value, can also again be any of the following elements:

bean | ref | idref | list | set | map | props | value | nul

3.3.2.4.1. Collection merging

Asof Spring 2.0, the container also supports the merging of collections. This allows an application developer to
define a parent-style <li st/ >, <map/ >, <set/> Of <props/> element, and have child-style <li st/ >, <map/ >,
<set/> Or <props/> elements inherit and override values from the parent collection; that is to say the child
collection's values will be the result obtained from the merging of the elements of the parent and child
collections, with the child's collection elements overriding values specified in the parent collection.

Please note that this section on merging makes use of the parent-child bean mechanism. This concept has not
yet been introduced, so readers unfamiliar with the concept of parent and child bean definitions may wish to
read the relevant section before continuing.

Find below an example of the collection merging feature:

<beans>
<bean i d="parent" abstract="true" cl ass="exanpl e. Conpl ex(Chj ect">
<property nanme="adm nEmail s">
<pr ops>

Spring Framework (2.5.6) 49

The 1oC container

<prop key="adm ni strator">adm ni strat or @xanpl e. conx/ pr op>
<prop key="support">support @xanpl e. conk/ prop>
</ props>
</ property>
</ bean>
<bean i d="child" parent="parent">
<property name="adm nEnail s">
<l-- the nerge is specified on the *child* collection definition -->
<props nerge="true">
<prop key="sal es">sal es@xanpl e. conx/ prop>
<prop key="support">support @xanpl e. co. uk</ prop>
</ props>
</ property>
</ bean>
<beans>

Notice the use of the mer ge=t r ue attribute on the <pr ops/ > element of the adni nEmai | s property of thechild
bean definition. When the chi | d bean is actualy resolved and instantiated by the container, the resulting
instance will have an adni nEnmi | s Properti es collection that contains the result of the merging of the child's
adni nEmmi | s collection with the parent's adni nEmai | s collection.

admi ni strat or=adm ni strat or @xanpl e. com
sal es=sal es@xanpl e. com
support =suppor t @xanpl e. co. uk

Notice how the child Properti es collection's value set will have inherited all the property elements from the
parent <props/ >. Notice aso how the child's value for the support value overrides the value in the parent
collection.

This merging behavior applies similarly to the <li st/ >, <map/ >, and <set /> collection types. In the specific
case of the <li st/ > element, the semantics associated with the Li st collection type, that is the notion of an
or der ed collection of values, is maintained; the parent's values will precede all of the child list's values. In the
case of the Map, Set, and Properties collection types, there is no notion of ordering and hence no ordering
semantics are in effect for the collection types that underlie the associated Map, Set and Properties
implementation types used internally by the container.

Finally, some minor notes about the merging support are in order; you cannot merge different collection types
(e.g. amvap and aLi st), and if you do attempt to do so an appropriate Except i on will be thrown; and in case it
is not immediately obvious, the ' nerge' attribute must be specified on the lower level, inherited, child
definition; specifying the ' ner ge' attribute on a parent collection definition is redundant and will not result in
the desired merging; and (lastly), please note that this merging feature is only available in Spring 2.0 (and later
versions).

3.3.2.4.2. Strongly-typed collection (Java 5+ only)

If you are using Java 5 or Java 6, you will be aware that it is possible to have strongly typed collections (using
generic types). That is, it is possible to declare aCol | ect i on type such that it can only contain st ri ng e ements
(for example). If you are using Spring to dependency inject a strongly-typed Col | ecti on into a bean, you can
take advantage of Spring's type-conversion support such that the elements of your strongly-typed Col | ecti on
instances will be converted to the appropriate type prior to being added to the Col | ectii on.

public class Foo {

private Map<String, Float> accounts

public void setAccounts(Mp<String, Float> accounts) {
this.accounts = accounts;

}

Spring Framework (2.5.6) 50

The 1oC container

<beans>
<bean i d="fo00" class="x.y.Foo">
<property name="accounts">
<map>
<entry key="one" val ue="9.99"/>
<entry key="two" val ue="2.75"/>
<entry key="six" val ue="3.99"/>
</ map>
</ property>
</ bean>
</ beans>

When the ' accounts' property of the ' foo' bean is being prepared for injection, the generics information
about the element type of the strongly-typed Map<String, Float> is actualy available via reflection, and so
Spring's type conversion infrastructure will actually recognize the various value elements as being of type
Fl oat and so the string values® 9. 99", ' 2.75' ,and' 3. 99" will be converted into an actual Fl oat type.

3.3.2.5. NulI's

The <nul I / > element is used to handle nul I values. Spring treats empty arguments for properties and the like
as empty strings. The following XML-based configuration metadata snippet results in the email property
being set to the empty st ri ng value (")

<bean cl ass="Exanpl eBean" >
<property name="enuail"><val ue/ ></ property>
</ bean>

Thisis equivalent to the following Java code: exanpl eBean. set Emai | (") . The special <nul | > element may be
used to indicate anul I value. For example:

<bean cl ass="Exanpl eBean" >
<property name="email"><nul | / ></ property>
</ bean>

The above configuration is equivalent to the following Java code: exanpl eBean. set Emai | (nul 1) .

3.3.2.6. Shortcuts and other convenience options for XML-based configuration metadata

The configuration metadata shown so far is a tad verbose. That is why there are several options available for
you to limit the amount of XML you have to write to configure your components. The first is a shortcut to
define values and references to other beans as part of a <propert y/ > definition. The second is dlightly different
format of specifying properties altogether.

3.3.2.6.1. XML-based configuration metadata shortcuts

The <property/ >, <construct or-ar g/ >, and <ent ry/ > elements al support a* val ue' attribute which may be
used instead of embedding afull <val ue/ > element. Therefore, the following:

<property name="nmnyProperty">
<val ue>hel | o</ val ue>
</ property>

<constructor- ar g>
<val ue>hel | o</ val ue>
</ constructor-arg>

<entry key="nyKey">
<val ue>hel | o</ val ue>

Spring Framework (2.5.6) 51

The 1oC container

</entry>

are equivaent to:

<property name="nyProperty" val ue="hello"/>
<constructor-arg val ue="hell 0"/>
<entry key="nyKey" val ue="hello0"/>

The <property/ > and <const r uct or - ar g/ > elements support a similar shortcut ' ref' attribute which may be
used instead of afull nested <r ef / > element. Therefore, the following:

<property name="nmnyProperty">
<ref bean="nyBean">
</ property>

<const ruct or - ar g>
<ref bean="nyBean">
</ constructor-arg>

.. are equivalent to:

<property name="nyProperty" ref="nyBean"/>
<constructor-arg ref="nmyBean"/>

Note however that the shortcut form is equivalent to a<ref bean="xxx"> element; there is no shortcut for <r ef
| ocal ="xxx">. To enforce astrict local reference, you must use the long form.

Finally, the entry element allows a shortcut form to specify the key and/or value of the map, in the form of the
"key' /' key-ref' and'val ue' /' val ue-ref' attributes. Therefore, the following:

<entry>

<key>
<ref bean="nyKeyBean" />

</ key>
<ref bean="nyVal ueBean" />

</entry>

isequivalent to:

<entry key-ref="nyKeyBean" val ue-ref="mnyVal ueBean"/>

Again, the shortcut form is equivalent to a <ref bean="xxx"> element; there is no shortcut for <ref
| ocal =" xxx">.

3.3.2.6.2. The p-namespace and how to use it to configure properties

The second option you have to limit the amount of XML you have to write to configure your components is to
use the special "p-namespace”. Spring 2.0 and later features support for extensible configuration formats using
namespaces. Those namespaces are al based on an XML Schema definition. In fact, the beans configuration
format that you've been reading about is defined in an XML Schema document.

Spring Framework (2.5.6) 52

The 1oC container

One special namespace is not defined in an XSD file, and only exists in the core of Spring itself. The so-called
p-namespace doesn't need a schema definition and is an alternative way of configuring your properties
differently than the way you have seen so far. Instead of using nested <property/> elements, using the
p-namespace you can use attributes as part of the bean element that describe your property values. The values
of the attributes will be taken as the values for your properties.

The following two XML snippets boil down to the same thing in the end: the first is using the standard XML
format whereas the second example is using the p-namespace.

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. spri ngframewor k. or g/ scherma/ p"
xsi : schemaLocati on="htt p://ww. spri ngf ranewor k. or g/ schema/ beans
http://ww. spri ngframewor k. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd" >

<bean nane="cl assi c" cl ass="com exanpl e. Exanpl eBean" >
<property name="email" val ue="foo@ar.com >
</ bean>

<bean nane="p- nanespace" cl ass="com exanpl e. Exanpl eBean"
p: enai | =" f oo@ar . conl'/ >
</ beans>

As you can see, we are including an attribute in the p-namespace called email in the bean definition - thisis
telling Spring that it should include a property declaration. As previously mentioned, the p-namespace doesn't
have a schema definition, so the name of the attribute can be set to whatever name your property has.

This next example includes two more bean definitions that both have a reference to another bean:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://wwmw. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. spri ngframework. or g/ schema/ p"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schenma/ beans
http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd" >

<bean nanme="j ohn-cl assi c" cl ass="com exanpl e. Person" >
<property name="nanme" val ue="John Doe"/>
<property name="spouse" ref="jane"/>

</ bean>

<bean name="j ohn- noder n"
cl ass="com exanpl e. Per son"
p: nane="John Doe"
p: spouse-ref="jane"/>

<bean nane="j ane" cl ass="com exanpl e. Per son" >
<property name="nane" val ue="Jane Doe"/>
</ bean>
</ beans>

As you can see, this example doesn't only include a property value using the p-namespace, but also uses a
specia format to declare property references. Whereas the first bean definition uses <pr operty nanme="spouse"
ref="jane"/> to create a reference from bean john to bean jane, the second bean definition uses
p: spouse-ref ="j ane" as an attribute to do the exact same thing. In this case 'spouse’ is the property name
whereasthe - r ef ' part indicates that thisis not a straight value but rather a reference to another bean.

Note

s

"8

Please note that the p-namespace is not quite as flexible as the standard XML format - for example
particular, the 'special' format used to declare property references will clash with properties that
end in 'Ref ', whereas the standard XML format would have no problem there. We recommend that
you choose carefully which approach you are going to use in your projects. You should also

Spring Framework (2.5.6) 53

The 1oC container

communicate this to your team members so you won't end up with XML documents using all three
approaches at the same time. This will prevent people from not understanding the application
because of different ways of configuring it, and will add to the overall consistency of your
codebase.

3.3.2.7. Compound property names

Compound or nested property names are perfectly legal when setting bean properties, as long as all components
of the path except the final property name are not nul | . Consider the following bean definition...

<bean i d="fo0" class="foo.Bar">
<property name="fred. bob. sammy" val ue="123" />
</ bean>

The f oo bean has afred property which has a bob property, which has a sammy property, and that final samy
property is being set to the value 123. In order for this to work, the fred property of f oo, and the bob property
of fred must not be nul I be non-null after the bean is constructed, or aNul | Poi nt er Except i on will be thrown.

3.3.3. Using depends- on

For most situations, the fact that a bean is a dependency of another is expressed by the fact that one bean is set
as a property of another. This is typically accomplished with the <ref / > element in XML-based configuration
metadata. For the relatively infrequent situations where dependencies between beans are less direct (for
example, when a static initializer in a class needs to be triggered, such as database driver registration), the
" depends- on' attribute may be used to explicitly force one or more beans to be initialized before the bean
using this element is initialized. Find below an example of using the ' depends-on' attribute to express a
dependency on a single bean.

<bean i d="beanOne" cl ass="Exanpl eBean" depends-on="manager"/>

<bean i d="nmanager" cl ass="ManagerBean" />

If you need to express a dependency on multiple beans, you can supply alist of bean names as the value of the
' depends- on' attribute, with commas, whitespace and semicolons all valid delimiters, like so:

<bean i d="beanOne" cl ass="Exanpl eBean" depends- on="nmanager, account Dao" >
<property name="nmanager" ref="manager" />
</ bean>

<bean i d="manager" cl ass="ManagerBean" />
<bean i d="account Dao" cl ass="x.y.jdbc.JdbcAccount Dao" />

Note

The 'depends- on' attribute at the bean definition level is used not only to specify an initiaization
time dependency, but also to specify the corresponding destroy time dependency (in the case of
singleton beans only). Dependent beans that define a 'depends- on' relationship with a given bean
will be destroyed first - prior to the given bean itself being destroyed. As a consequence,
'depends- on' may be used to control shutdown order too.

3.3.4. Lazily-instantiated beans

Spring Framework (2.5.6) 54

The 1oC container

The default behavior for ApplicationContext implementations is to eagerly pre-instantiate all si ngl et on
beans at startup. Pre-instantiation means that an Appl i cati onCont ext Will eagerly create and configure all of
its singleton beans as part of itsinitialization process. Generally thisis a good thing, because it means that any
errors in the configuration or in the surrounding environment will be discovered immediately (as opposed to
possibly hours or even days down the line).

However, there are times when this behavior is not what is wanted. If you do not want a singleton bean to be
pre-instantiated when using an Appl i cati onCont ext, you can selectively control this by marking a bean
definition as lazy-initiaized. A lazily-initialized bean indicates to the 10C container whether or not a bean
instance should be created at startup or when it isfirst requested.

When configuring beans via XML, this lazy loading is controlled by the ' | azy-init' attribute on the <bean/ >
element; for example:

<bean i d="lazy" cl ass="com f 0o. Expensi veToCr eat eBean" |azy-init="true"/>

<bean nane="not.| azy" cl ass="com f 0o. Anot her Bean"/ >

When the above configuration is consumed by an Appl i cati onCont ext, the bean named ' 1 azy* will not be
eagerly pre-instantiated when the Appli cati onCont ext is starting up, whereas the ' not . 1 azy' bean will be
eagerly pre-instantiated.

One thing to understand about lazy-initialization is that even though a bean definition may be marked up as
being lazy-initialized, if the lazy-initidized bean is the dependency of a singleton bean that is not
lazy-initialized, when the Appl i cati onCont ext is eagerly pre-instantiating the singleton, it will have to satisfy
all of the singletons dependencies, one of which will be the lazy-initialized bean! So don't be confused if the
loC container creates one of the beans that you have explicitly configured as lazy-initialized at startup; all that
means is that the lazy-initialized bean is being injected into a non-lazy-initialized singleton bean el sewhere.

It is also possible to control lazy-initialization at the container level by using the ' def aul t-1azy-init"
attribute on the <beans/ > element; for example:

<beans default-lazy-init="true">
<!-- no beans will be pre-instantiated... -->
</ beans>

3.3.5. Autowiring collaborators

The Spring container is able to autowire relationships between collaborating beans. This means that it is
possible to automatically let Spring resolve collaborators (other beans) for your bean by inspecting the contents
of the BeanFact ory. The autowiring functionality has five modes. Autowiring is specified per bean and can
thus be enabled for some beans, while other beans will not be autowired. Using autowiring, it is possible to
reduce or eliminate the need to specify properties or constructor arguments, thus saving a significant amount of
typing. 2 When usi ng XML-based configuration metadata, the autowire mode for a bean definition is specified
by using the aut owi r e attribute of the <bean/ > element. The following values are allowed:

Table 3.2. Autowiring modes

Mode Explanation

no
No autowiring at all. Bean references must be defined via a ref element. This is the

default, and changing this is discouraged for larger deployments, since explicitly
2Seethe section entitled Section 3.3.1; “Injecting dependencies”

Spring Framework (2.5.6) 55

The 1oC container

Mode Explanation

specifying collaborators gives greater control and clarity. To some extent, it is a form of
documentation about the structure of a system.

byName
Autowiring by property name. This option will inspect the container and look for a bean

named exactly the same as the property which needs to be autowired. For example, if you
have a bean definition which is set to autowire by name, and it contains a master property
(that is, it has a setMaster(..) method), Spring will look for a bean definition named
mast er , and use it to set the property.

byType
Allows a property to be autowired if there is exactly one bean of the property type in the

container. If there is more than one, afatal exception is thrown, and this indicates that you
may not use byType autowiring for that bean. If there are no matching beans, nothing
happens, the property is not set. If this is not desirable, setting the
dependency- check="obj ect s" attribute value specifies that an error should be thrown in
this case.

constructor
Thisis analogous to byType, but applies to constructor arguments. If there isn't exactly one

bean of the constructor argument type in the container, afatal error is raised.

autodetect
Chooses constructor or byType through introspection of the bean class. If a default

constructor isfound, the byType mode will be applied.

Note that explicit dependenciesin property and const ruct or - ar g Settings al ways override autowiring. Please
also note that it is not currently possible to autowire so-called simple properties such as primitives, Stri ngs,
and d asses (and arrays of such simple properties). (This is by-design and should be considered a feature.)
When using either the byType or constructor autowiring mode, it is possible to wire arrays and
typed-collections. In such cases all autowire candidates within the container that match the expected type will
be provided to satisfy the dependency. Strongly-typed Maps can even be autowired if the expected key typeis
string. An autowired Map's values will consist of all bean instances that match the expected type, and the
Map's keys will contain the corresponding bean names.

Autowire behavior can be combined with dependency checking, which will be performed after al autowiring
has been completed.

It is important to understand the various advantages and disadvantages of autowiring. Some advantages of
autowiring include:

« Autowiring can significantly reduce the volume of configuration required. However, mechanisms such as the
use of abean template (discussed elsewhere in this chapter) are also valuablein this regard.

« Autowiring can cause configuration to keep itself up to date as your objects evolve. For example, if you need
to add an additional dependency to a class, that dependency can be satisfied automatically without the need
to modify configuration. Thus there may be a strong case for autowiring during development, without ruling
out the option of switching to explicit wiring when the code base becomes more stable.

Some disadvantages of autowiring:

» Autowiring is more magical than explicit wiring. Although, as noted in the above table, Spring is careful to

Spring Framework (2.5.6) 56

The 1oC container

avoid guessing in case of ambiguity which might have unexpected results, the relationships between your
Spring-managed objects are no longer documented explicitly.

« Wiring information may not be available to tools that may generate documentation from a Spring container.

Another issue to consider when autowiring by type is that multiple bean definitions within the container may
match the type specified by the setter method or constructor argument to be autowired. For arrays, collections,
or Maps, thisis not necessarily a problem. However for dependencies that expect a single value, this ambiguity
will not be arbitrarily resolved. Instead, if no unique bean definition is available, an Exception will be thrown.
Y ou do have several options when confronted with this scenario. First, you may abandon autowiring in favor of
explicit wiring. Second, you may designate that certain bean definitions are never to be considered as
candidates by setting their * aut owi r e- candi dat e' attributesto ' f al se' as described in the next section. Third,
you may designate a single bean definition as the primary candidate by setting the ' pri mary* attribute of its
<bean/ > element to ' true' . Findly, if you are using at least Java 5, you may be interested in exploring the
more fine-grained control available with annotation-based configuration as described in the section entitled
Section 3.11, “ Annotation-based configuration”.

When deciding whether to use autowiring, there is no wrong or right answer in all cases. A degree of
consistency across a project is best though; for example, if autowiring is not used in general, it might be
confusing to developersto useit just to wire one or two bean definitions.

3.3.5.1. Excluding a bean from being available for autowiring

Y ou can aso (on a per-bean basis) totally exclude a bean from being an autowire candidate. When configuring
beans using Spring's XML format, the ' aut owi re- candi date' attribute of the <bean/ > element can be set to
‘fal se'; this has the effect of making the container totally exclude that specific bean definition from being
available to the autowiring infrastructure.

Another option is to limit autowire candidates based on pattern-matching against bean names. The top-level
<beans/ > element accepts one or more patterns within its ' def aul t - aut owi r e- candi dat es' attribute. For
example, to limit autowire candidate status to any bean whose name ends with 'Repository’, provide a value of
"*Repository'. To provide multiple patterns, define them in a comma-separated list. Note that an explicit value
of "true' or'false' forabean definition's' aut owi r e- candi dat e’ attribute always takes precedence, and for
such beans, the pattern matching rules will not apply.

These techniques can be useful when you have one or more beans that you absolutely never ever want to have
injected into other beans via autowiring. It does not mean that an excluded bean cannot itself be configured
using autowiring... it can, it is rather that it itself will not be considered as a candidate for autowiring other
beans.

3.3.6. Checking for dependencies

The Spring 10C container also has the ability to check for the existence of unresolved dependencies of a bean
deployed into the container. These are JavaBeans properties of the bean, which do not have actual values set for
them in the bean definition, or aternately provided automatically by the autowiring feature.

This feature is sometimes useful when you want to ensure that all properties (or al properties of a certain type)
are set on a bean. Of course, in many cases a bean class will have default values for many properties, or some
properties do not apply to all usage scenarios, so this feature is of limited use. Dependency checking can aso
be enabled and disabled per bean, just as with the autowiring functionality. The default is to not check
dependencies. Dependency checking can be handled in severa different modes. When using XML-based
configuration metadata, this is specified viathe ' dependency- check' attribute in a bean definition, which may

Spring Framework (2.5.6) 57

The 1oC container

have the following values.

Table 3.3. Dependency checking modes

Mode Explanation

none
No dependency checking. Properties of the bean which have no value specified for them

are simply not set.

simple
Dependency checking is performed for primitive types and collections (everything except
collaborators).

object
Dependency checking is performed for collaborators only.

al

Dependency checking is done for collaborators, primitive types and collections.

If you are using Java 5 and thus have access to source-level annotations, you may find the section entitled
Section 25.3.1, “ @equi r ed” to be of interest.

3.3.7. Method Injection

For most application scenarios, the mgority of the beans in the container will be singletons. When a singleton
bean needs to collaborate with another singleton bean, or a non-singleton bean needs to collaborate with
another non-singleton bean, the typical and common approach of handling this dependency by defining one
bean to be a property of the other is quite adequate. There is a problem when the bean lifecycles are different.
Consider a singleton bean A which needs to use a non-singleton (prototype) bean B, perhaps on each method
invocation on A. The container will only create the singleton bean A once, and thus only get the opportunity to
set the properties once. There is no opportunity for the container to provide bean A with a new instance of bean
B every time oneis needed.

One solution to thisissue isto forego some inversion of control. Bean A can be made aware of the container by
implementing the BeanFact oryAwar e interface, and use programmatic means to ask the container via a
getBean("B") cal for (a typicaly new) bean B instance every time it needs it. Find below an admittedly
somewhat contrived example of this approach:

/'l a class that uses a stateful Command-style class to perform some processing
package fiona. appl e;

/'l lots of Spring-APlI inports

i mport org. springframewor k. beans. BeansExcepti on;

i mport org.springframework. beans. fact ory. BeanFact ory;

i nport org. springfranework. beans. f act ory. BeanFact or yAwar e;

public class ConmandManager i npl ements BeanFact oryAware {
private BeanFactory beanFactory;

public Object process(Map commandState) {
/1 grab a new instance of the appropriate Command
Command conmmand = creat eCommand() ;
/'l set the state on the (hopefully brand new) Conmand i nstance
command. set St at e(commandSt at e) ;
return conmmand. execute();

}

/! the command returned here could be an inplenentation that executes asynchronously, or whatever
protected Command creat eCommand() {
return (Comand) this. beanFactory. get Bean("conmand"); // notice the Spring APl dependency

Spring Framework (2.5.6) 58

The 1oC container

}

public void setBeanFactory(BeanFactory beanFactory) throws BeansException {
t hi s. beanFactory = beanFactory;

}
}

The above example is generally not a desirable solution since the business code is then aware of and coupled to
the Spring Framework. Method Injection, a somewhat advanced feature of the Spring 1oC container, alows this
use case to be handled in a clean fashion.

3.3.7.1. Lookup method injection

Isn't this Method Injection...

.. somewhat like Tapestry 4.0's pages, where folks wrote abstract properties that Tapestry would
override at runtime with implementations that did stuff? It sureis (well, somewhat).

Y ou can read more about the motivation for Method Injection in this blog entry.

Lookup method injection refersto the ability of the container to override methods on container managed beans,
to return the result of looking up another named bean in the container. The lookup will typicaly be of a
prototype bean as in the scenario described above. The Spring Framework implements this method injection by
dynamically generating a subclass overriding the method, using bytecode generation viathe CGLIB library.

So if you look at the code from previous code snippet (the CommandManager class), the Spring container is going
to dynamically override the implementation of the creat eConmand() method. Your CommandManager class is
not going to have any Spring dependencies, as can be seen in this reworked example below:

package fiona. appl e;
/1 no nmore Spring inports!
public abstract class ConmmandManager {

public oject process(Object commandState) {
/'l grab a new instance of the appropriate Comand interface
Command command = creat eCommand() ;
/] set the state on the (hopefully brand new) Command i nstance
conmand. set St at e(conmandSt at e) ;
return command. execute();

}

/'l okay... but where is the inplenentation of this nethod?
protected abstract Command creat eCommand();

}
In the client class containing the method to be injected (the CommandManager in this case), the method that is to
be 'injected’ must have a signature of the following form:

<public| protected> [abstract] <return-type> theMet hodNane(no-argunents);

If the method is abstract, the dynamically-generated subclass will implement the method. Otherwise, the
dynamically-generated subclass will override the concrete method defined in the original class. Let's ook at an
example:

<I-- a stateful bean deployed as a prototype (non-singleton) -->

<bean i d="command" cl ass="fi ona. appl e. AsyncConmand" scope="pr ot ot ype">
<I-- inject dependencies here as required -->

</ bean>

Spring Framework (2.5.6) 59

http://blog.springframework.com/rod/?p=1

The 1oC container

<! -- conmandProcessor USES st ateful ConmandHel per - - >

<bean i d="commandManager" cl ass="fi ona. appl e. ConmandManager " >
<l ookup- met hod nane="creat eConmand" bean="conmmand"/>

</ bean>

The bean identified as commandManager will call its own method cr eat eCommand() whenever it needs a new
instance of the command bean. It is important to note that the person deploying the beans must be careful to
deploy the command bean as a prototype (if that is actually what is needed). If it is deployed as a singleton, the
same instance of the command bean will be returned each time!

Please be aware that in order for this dynamic subclassing to work, you will need to have the CGLIB jar(s) on
your classpath. Additionally, the class that the Spring container is going to subclass cannot be fi nal , and the
method that is being overridden cannot be fi nal either. Also, testing a class that has an abst ract method can
be somewhat odd in that you will have to subclass the class yourself and supply a stub implementation of the
abstract method. Finally, objects that have been the target of method injection cannot be serialized.

Tip
“a

The interested reader may aso find the ServicelocatorFactoryBean (in the
org. springframewor k. beans. fact ory. confi g package) to be of use; the approach is similar to
that of the bj ect Fact or yCr eat i ngFact or yBean, but it allows you to specify your own lookup
interface as opposed to having to use a Spring-specific lookup interface such as the
vj ect Fact ory. Consult the (copious) Javadoc for the Servi celLocat or Fact oryBean for a full
treatment of this alternative approach (that does reduce the coupling to Spring).

3.3.7.2. Arbitrary method replacement

A less commonly useful form of method injection than Lookup Method Injection is the ability to replace
arbitrary methods in a managed bean with another method implementation. Users may safely skip the rest of
this section (which describes this somewhat advanced feature), until this functionality is actually needed.

When using XML-based configuration metadata, the repl aced- met hod element may be used to replace an
existing method implementation with another, for a deployed bean. Consider the following class, with a method
computeV alue, which we want to override:

public class MyVal ueCal cul ator {

public String conputeValue(String input) {
/|l sone real code...

}

// some other nethods...

A classimplementing the or g. spri ngf ramewor k. beans. f act ory. support . Met hodRepl acer interface provides
the new method definition.

/** nmeant to be used to override the existing conputeval ue(String)
i mpl enentation in MVal ueCal cul at or
*/
public cl ass Repl acenent Conput eVal ue i npl enents Met hodRepl acer {
public oject reinplenment(oject o, Method m oject[] args) throws Throwabl e {
/'l get the input value, work with it, and return a conputed result
String input = (String) args[0];

return ...;

Spring Framework (2.5.6) 60

The 1oC container

The bean definition to deploy the original class and specify the method override would look like this:

<bean i d="nyVal ueCal cul at or class="x.y.z. MyVal ueCal cul ator" >
<l-- arbitrary nethod repl acenent -->
<repl aced- net hod nanme="conput eVal ue" repl acer ="r epl acenent Conput eVal ue" >
<arg-type>String</arg-type>
</ repl aced- net hod>
</ bean>

<bean i d="repl acenent Conput eVal ue" cl ass="a. b. c. Repl acenent Conput eVal ue"/ >

One or more contained <ar g- t ype/ > elements within the <r epl aced- net hod/ > element may be used to indicate
the method signature of the method being overridden. Note that the signature for the arguments is actually only
needed in the case that the method is actually overloaded and there are multiple variants within the class. For
convenience, the type string for an argument may be a substring of the fully qualified type name. For example,
all the following would match j ava. | ang. Stri ng.

java.lang. String
String
Str

Since the number of arguments is often enough to distinguish between each possible choice, this shortcut can
save alot of typing, by allowing you to type just the shortest string that will match an argument type.

3.4. Bean scopes

When you create a bean definition what you are actually creating is arecipe for creating actual instances of the
class defined by that bean definition. The idea that a bean definition is a recipe is important, because it means
that, just like a class, you can potentially have many object instances created from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged into an
object that is created from a particular bean definition, but also the scope of the objects created from a
particular bean definition. This approach is very powerful and gives you the flexibility to choose the scope of
the objects you create through configuration instead of having to 'bake in' the scope of an object at the Java
class level. Beans can be defined to be deployed in one of a number of scopes: out of the box, the Spring
Framework supports exactly five scopes (of which three are available only if you are using a web-aware
Appl i cat i onCont ext).

The scopes supported out of the box are listed bel ow:

Table 3.4. Bean scopes

Scope Description

singleton Scopes a single bean definition to a single object
instance per Spring 10C container.

prototype Scopes a single bean definition to any number of
object instances.

request Scopes a single bean definition to the lifecycle of a

Spring Framework (2.5.6) 61

The 1oC container

Scope Description

single HTTP request; that is each and every HTTP
request will have its own instance of a bean created
off the back of a single bean definition. Only valid in
the context of a web-aware Spring
Appl i cati onCont ext .

session Scopes a single bean definition to the lifecycle of a
HTTP Session. Only valid in the context of a
web-aware Spring Appl i cat i onCont ext .

dlobal session Scopes a single bean definition to the lifecycle of a
global HTTP Session. Typically only valid when
used in a portlet context. Only valid in the context of
aweb-aware Spring Appl i cat i onCont ext .

3.4.1. The singleton scope

When a bean is a singleton, only one shared instance of the bean will be managed, and al requests for beans
with an id or i ds matching that bean definition will result in that one specific bean instance being returned by
the Spring container.

To put it another way, when you define a bean definition and it is scoped as a singleton, then the Spring 10C
container will create exactly one instance of the object defined by that bean definition. This single instance will
be stored in a cache of such singleton beans, and all subsequent requests and references for that named bean
will result in the cached object being returned.

Only one instance is ever created...

<kean id="accountDao" =laszs="__." />

... and this same shared instance is injected into each collaborating object

Please be aware that Spring's concept of a singleton bean is quite different from the Singleton pattern as defined
in the seminal Gang of Four (GoF) patterns book. The GoF Singleton hard codes the scope of an aobject such
that one and only one instance of a particular class will ever be created per c assLoader . The scope of the
Spring singleton is best described as per container and per bean. This means that if you define one bean for a

Spring Framework (2.5.6) 62

The 1oC container

particular class in a single Spring container, then the Spring container will create one and only one instance of
the class defined by that bean definition. The singleton scope is the default scope in Spring. To define a bean as
asingleton in XML, you would write configuration like so:

<bean i d="account Servi ce" cl ass="com foo. Def aul t Account Servi ce"/ >

<bean i d="account Servi ce" cl ass="com foo. Def aul t Account Servi ce" scope="singl eton"/>

<l-- the following is equival ent and preserved for backward conpatibility in spring-beans.dtd -->
<bean i d="account Servi ce" cl ass="com f 0o. Def aul t Account Servi ce" singleton="true"/>

3.4.2. The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance every
time a request for that specific bean is made (that is, it is injected into another bean or it is requested via a
programmatic get Bean() method call on the container). As arule of thumb, you should use the prototype scope
for al beansthat are stateful, while the singleton scope should be used for stateless beans.

The following diagram illustrates the Spring prototype scope. Please note that a DAO would not typically be
configured as a prototype, since a typical DAO would not hold any conversational state; it was just easier for
this author to reuse the core of the singleton diagram.

A brand new bean instance is created...

O

<bean id="accountDac" class="._."
scope="prototype" />

... each and every time the prototype is referenced by collaborating beans

To define abean as a prototype in XML, you would write configuration like so:

<l'-- using spring-beans-2.0.dtd -->
<bean i d="account Servi ce" class="com f 0o. Def aul t Account Servi ce" scope="prototype"/>

<l-- the following is equivalent and preserved for backward conpatibility in spring-beans.dtd -->
<bean i d="account Servi ce" cl ass="com foo. Def aul t Account Servi ce" singleton="fal se"/>

There is one quite important thing to be aware of when deploying a bean in the prototype scope, in that the
lifecycle of the bean changes slightly. Spring does not manage the complete lifecycle of a prototype bean: the
container instantiates, configures, decorates and otherwise assembles a prototype object, hands it to the client
and then has no further knowledge of that prototype instance. This means that while initialization lifecycle
callback methods will be called on all objects regardless of scope, in the case of prototypes, any configured
destruction lifecycle calbacks will not be called. It is the responsibility of the client code to clean up prototype

Spring Framework (2.5.6) 63

<l-- the followi ng is equival ent, though redundant (singleton scope is the default); using spring-beans-2.0.dtd --

>

The 1oC container

scoped objects and release any expensive resources that the prototype bean(s) are holding onto. (One possible
way to get the Spring container to release resources used by prototype-scoped beans is through the use of a
custom bean post-processor which would hold areference to the beans that need to be cleaned up.)

In some respects, you can think of the Spring containers role when talking about a prototype-scoped bean as
somewhat of areplacement for the Java' new operator. All lifecycle aspects past that point have to be handled
by the client. (The lifecycle of a bean in the Spring container is further described in the section entitled
Section 3.5.1, “Lifecycle callbacks’.)

3.4.3. Singleton beans with prototype-bean dependencies

When using singleton-scoped beans that have dependencies on beans that are scoped as prototypes, please be
aware that dependencies are resolved at instantiation time. This means that if you dependency inject a
prototype-scoped bean into a singleton-scoped bean, a brand new prototype bean will be instantiated and then
dependency injected into the singleton bean... but that isall. That exact same prototype instance will be the sole
instance that is ever supplied to the singleton-scoped bean, which isfineif that is what you want.

However, sometimes what you actually want is for the singleton-scoped bean to be able to acquire a brand new
instance of the prototype-scoped bean again and again and again at runtime. In that case it is no use just
dependency injecting a prototype-scoped bean into your singleton bean, because as explained above, that only
happens once when the Spring container is instantiating the singleton bean and resolving and injecting its
dependencies. If you are in the scenario where you need to get a brand new instance of a (prototype) bean again
and again and again at runtime, you are referred to the section entitled Section 3.3.7, “Method Injection”

Backwar ds compatibility note: specifying thelifecycle scopein XML

A If you are referencing the* spri ng- beans. dtd' DTD in abean definition file(s), and you are being
explicit about the lifecycle scope of your beans you must use the "si ngl et on" attribute to express
the lifecycle scope (remembering that the singleton lifecycle scope is the default). If you are
referencing the ' spri ng- beans-2. 0. dtd'" DTD or the Spring 2.0 XSD schema, then you will need
to use the "scope" attribute (because the "si ngl et on" attribute was removed from the definition of
the new DTD and XSD filesin favor of the "scope™ attribute).

To be totally clear about this, this means that if you use the "si ngl et on" attribute in an XML bean
definition then you must be referencing the ' spri ng- beans. dtd' DTD in that file. If you are using
the "scope" attribute then you must be referencing either the' spri ng- beans-2. 0. dtd' DTD or the
" spring-beans-2.5.xsd" XSD in that file.

3.4.4. The other scopes

The other scopes, namely request, sessi on, and gl obal sessi on are for use only in web-based applications
(and can be used irrespective of which particular web application framework you are using, if indeed any). In
the interest of keeping related concepts together in one place in the reference documentation, these scopes are
described here.

Note

"
The scopes that are described in the following paragraphs are only available if you are using a
web-aware Spring Appl i cati onCont ext implementation (such as xm WebAppl i cat i onCont ext). If
you try using these next scopes with regular Spring 10C containers such as the X BeanFact ory oOf
C assPat hxm Appl i cati onCont ext, you Will get an 111 egal St at eExcepti on complaining about
an unknown bean scope.

Spring Framework (2.5.6) 64

The 1oC container

3.4.4.1. Initial web configuration

In order to support the scoping of beans at the request, session, and gl obal session levels (web-scoped
beans), some minor initial configuration is required before you can set about defining your bean definitions.
Please note that this extra setup is not required if you just want to use the 'standard’ scopes (namely singleton
and prototype).

Now as things stand, there are a couple of ways to effect thisinitial setup depending on your particular Servlet
environment...

If you are accessing scoped beans within Spring Web MV C, i.e. within arequest that is processed by the Spring
Di spat cher Servl et, Or Di spatcherPortlet, then no special Setup is necessary: Di spatcher Servl et and
Di spat cher Port | et already expose al relevant state.

When using a Servlet 2.4+ web container, with requests processed outside of Spring's DispatcherServlet (e.g.
when using JSF or Struts), you need to add the following j avax. servl et. Servl et Request Li st ener to the
declarations in your web application's' web. xm ' file.

<web- app>

<li stener>
<l i st ener-cl ass>org. spri ngf ranewor k. web. cont ext . request . Request Cont ext Li st ener </ | i st ener-cl ass>
</listener>

</ web- app>

If you are using an older web container (Servlet 2.3), you will need to use the provided j avax. servl et. Fil ter
implementation. Find below a snippet of XML configuration that has to be included in the ' web. xm ' file of
your web application if you want to have access to web-scoped beans in requests outside of Spring's
DispatcherServlet on a Servlet 2.3 container. (The filter mapping depends on the surrounding web application
configuration and so you will have to change it as appropriate.)

<web- app>

<filter>
<filter-name>requestContextFilter</filter-nanme>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
</filter>
<filter-mppi ng>
<filter-name>requestContextFilter</filter-nanme>
<url-pattern>/*</url-pattern>
</filter-mppi ng>

</ web- app>

That's it. Di spat cher Servl et , Request Cont ext Li st ener and Request Context Fi | ter all do exactly the same
thing, namely bind the HTTP request object to the Thread that is servicing that request. This makes beans that
are reguest- and session-scoped available further down the call chain.

3.4.4.2. The request scope

Consider the following bean definition:

<bean i d="I| ogi nAction" class="com fo0o. Logi nActi on" scope="request"/>

With the above bean definition in place, the Spring container will create a brand new instance of the
Logi nActi on bean using the ' I ogi nActi on' bean definition for each and every HTTP request. That is, the
"1 ogi nActi on' bean will be effectively scoped at the HTTP request level. Y ou can change or dirty the internal

Spring Framework (2.5.6) 65

The 1oC container

state of the instance that is created as much as you want, safe in the knowledge that other requests that are also
using instances created off the back of the same ' I ogi nAction' bean definition will not be seeing these
changes in state since they are particular to an individual request. When the request is finished processing, the
bean that is scoped to the request will be discarded.

3.4.4.3. The session scope

Consider the following bean definition:

<bean i d="user Preferences" class="com foo. UserPreferences" scope="session"/>

With the above bean definition in place, the Spring container will create a brand new instance of the
User Pref erences bean using the ' user Preferences' bean definition for the lifetime of a single HTTP
Sessi on. In other words, the ' user Pref erences' bean will be effectively scoped at the HTTP Sessi on level.
Just liker equest - scoped beans, you can change the internal state of the instance that is created as much as you
want, safe in the knowledge that other HTTP sessi on instances that are also using instances created off the
back of the same ' user Pref erences' bean definition will not be seeing these changes in state since they are
particular to an individual HTTP Sessi on. When the HTTP Sessi on is eventually discarded, the bean that is
scoped to that particular HTTP Sessi on will also be discarded.

3.4.4.4. The global session scope

Consider the following bean definition:

<bean i d="user Preferences" class="com foo. UserPreferences" scope="gl obal Sessi on"/ >

The gl obal sessi on scopeissimilar to the standard HTTP Sessi on scope (described immediately above), and
really only makes sense in the context of portlet-based web applications. The portlet specification defines the
notion of a global Sessi on that is shared amongst all of the various portlets that make up a single portlet web
application. Beans defined at the gl obal sessi on scope are scoped (or bound) to the lifetime of the global
portlet Sessi on.

Please note that if you are writing a standard Servlet-based web application and you define one or more beans
as having gl obal sessi on scope, the standard HTTP Sessi on scope will be used, and no error will be raised.

3.4.4.5. Scoped beans as dependencies

Being able to define a bean scoped to a HTTP request or Sessi on (or indeed a custom scope of your own
devising) isall very well, but one of the main value-adds of the Spring 1oC container is that it manages not only
the instantiation of your objects (beans), but also the wiring up of collaborators (or dependencies). If you want
to inject a (for example) HTTP request scoped bean into another bean, you will need to inject an AOP proxy in
place of the scoped bean. That is, you need to inject a proxy object that exposes the same public interface as the
scoped object, but that is smart enough to be able to retrieve the real, target object from the relevant scope (for
example aHTTP request) and delegate method calls onto the real object.

Note

"
You do not need to use the <aop: scoped- proxy/ > in conjunction with beans that are scoped as
si ngl et ons Of prot ot ypes. It isan error to try to create a scoped proxy for a singleton bean (and
the resulting BeanCr eat i onExcept i on Will certainly set you straight in this regard).

Let's look at the configuration that is required to effect this; the configuration is not hugely complex (it takes

Spring Framework (2.5.6) 66

The 1oC container

just oneling), but it isimportant to understand the “why” as well asthe “how” behind it.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://wwm. spri ngframewor k. or g/ schenma/ aop”
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. or g/ schenma/ aop http://ww. springfranmewor k. or g/ schena/ aop/ spri ng-aop-2. 5. xsd">

<l-- a HITP session-scoped bean exposed as a proxy -->
<bean i d="user Preferences" class="com foo. User Preferences" scope="session">

<I-- this next element effects the proxying of the surroundi ng bean -->
<aop: scoped- pr oxy/ >

</ bean>

<l-- a singleton-scoped bean injected with a proxy to the above bean -->

<bean i d="user Servi ce" class="com foo. Si npl eUser Servi ce">

<l-- a reference to the proxied 'userPreferences’ bean -->
<property nanme="user Preferences" ref="userPreferences"/>

</ bean>
</ beans>

To create such a proxy, you need only to insert a child <aop: scoped- proxy/ > element into a scoped bean
definition (you may also need the CGLIB library on your classpath so that the container can effect class-based
proxying; you will also need to be using Appendix A, XML Schema-based configuration). So, just why do you
need this <aop: scoped-proxy/> element in the definition of beans scoped at the request, session,
gl obal Sessi on and 'insert your custom scope here' level? The reason is best explained by picking apart the
following bean definition (please note that the following ' user Pref erences' bean definition as it stands is
incomplete):

<bean i d="user Preferences" class="com foo. User Preferences" scope="session"/>

<bean i d="user Manager" cl ass="com f oo. User Manager" >
<property nanme="user Pref erences" ref="userPreferences"/>
</ bean>

From the above configuration it is evident that the singleton bean ' user Manager® is being injected with a
reference to the HTTP Session-scoped bean 'userPreferences'. The sdient point here is that the
" user Manager' bean isasingleton... it will be instantiated exactly once per container, and its dependencies (in
this case only one, the ' userPreferences' bean) will also only be injected (once!). This means that the
" user Manager ' Will (conceptually) only ever operate on the exact same ' user Pref er ences' object, that is the
one that it was originaly injected with. This is not what you want when you inject a HTTP Sessi on-scoped
bean as a dependency into a collaborating object (typically). Rather, what we do want is a single
"user Manager' object, and then, for the lifetime of a HTTP Session, we want to see and use a
"user Preferences' object that is specific to said HTTP Sessi on.

Rather what you need then is to inject some sort of object that exposes the exact same public interface as the
User Pref erences class (ideally an object that is a User Pref er ences instance) and that is smart enough to be
able to go off and fetch the real User Pref erences object from whatever underlying scoping mechanism we
have chosen (HTTP request, Sessi on, etc.). We can then safely inject this proxy object into the ' user Manager*
bean, which will be blissfully unaware that the User Pr ef er ences reference that it is holding onto is a proxy. In
the case of this example, when a User Manager instance invokes a method on the dependency-injected
User Pref er ences object, it is really invoking a method on the proxy... the proxy will then go off and fetch the
real User Pref er ences object from (in this case) the HTTP Sessi on, and delegate the method invocation onto
theretrieved real User Pr ef er ences object.

That is why you need the following, correct and complete, configuration when injecting r equest -, sessi on-,

Spring Framework (2.5.6) 67

The 1oC container

and gl obal Sessi on- scoped beansinto collaborating objects:

<bean i d="userPreferences" class="com foo. UserPreferences" scope="session">
<aop: scoped- pr oxy/ >
</ bean>

<bean id="user Manager" cl ass="com f 0o. User Manager " >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

3.4.4.5.1. Choosing the type of proxy created

By default, when the Spring container is creating a proxy for a bean that is marked up with the
<aop: scoped- pr oxy/ > element, a CGLIB-based class proxy will be created. This means that you need to have
the CGLIB library on the classpath of your application.

Note: CGLIB proxies will only intercept public method calls! Do not call non-public methods on such a proxy;
they will not be delegated to the scoped target object.

You can choose to have the Spring container create 'standard' JDK interface-based proxies for such scoped
beans by specifying 'f al se' for the value of the 'proxy-target - cl ass' attribute of the <aop: scoped- pr oxy/ >
element. Using JDK interface-based proxies does mean that you don't need any additional libraries on your
application's classpath to effect such proxying, but it does mean that the class of the scoped bean must
implement at least one interface, and all of the collaborators into which the scoped bean is injected must be
referencing the bean via one of itsinterfaces.

<!I'-- Defaul tUserPreferences i npl ements the UserPreferences interface -->

<bean i d="user Preferences" class="com foo. Defaul t User Preferences" scope="session">
<aop: scoped- proxy proxy-target-class="fal se"/>

</ bean>

<bean i d="user Manager" cl ass="com f oo. User Manager" >
<property nanme="user Preferences" ref="userPreferences"/>
</ bean>

The section entitled Section 6.6, “Proxying mechanisms’ may aso be of some interest with regard to
understanding the nuances of choosing whether class-based or interface-based proxying is right for you.

3.4.5. Custom scopes

As of Spring 2.0, the bean scoping mechanism in Spring is extensible. This means that you are not limited to
just the bean scopes that Spring provides out of the box; you can define your own scopes, or even redefine the
existing scopes (athough that last one would probably be considered bad practice - please note that you cannot
override the built-in si ngl et on and pr ot ot ype SCOpES).

3.4.5.1. Creating your own custom scope

Scopes are defined by the or g. spri ngf ramewor k. beans. f act ory. confi g. Scope interface. Thisisthe interface
that you will need to implement in order to integrate your own custom scope(s) into the Spring container, and is
described in detail below. Y ou may wish to look at the Scope implementations that are supplied with the Spring
Framework itself for an idea of how to go about implementing your own. The Scope Javadoc explains the main
class to implement when you need your own scope in more detail too.

The scope interface has four methods dealing with getting objects from the scope, removing them from the
scope and alowing them to be 'destroyed’ if needed.

The first method should return the object from the underlying scope. The session scope implementation for

Spring Framework (2.5.6) 68

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/config/Scope.html

The 1oC container

example will return the session-scoped bean (and if it does not exist, return a new instance of the bean, after
having bound it to the session for future reference).

Obj ect get(String name, ObjectFactory objectFactory)

The second method should remove the object from the underlying scope. The session scope implementation for
example, removes the session-scoped bean from the underlying session. The object should be returned (you are
allowed to return null if the object with the specified name wasn't found)

Obj ect renmpve(String nane)

The third method is used to register callbacks the scope should execute when it is destroyed or when the
specified object in the scope is destroyed. Please refer to the Javadoc or a Spring scope implementation for
more information on destruction callbacks.

voi d registerDestructionCall back(String name, Runnabl e destructionCal | back)

The last method deals with obtaining the conversation identifier for the underlying scope. This identifier is
different for each scope. For a session for example, this can be the session identifier.

String get Conversationld()

3.4.5.2. Using a custom scope

After you have written and tested one or more custom Scope implementations, you then need to make the
Spring container aware of your new scope(s). The central method to register a new Scope with the Spring
container is declared on the Confi gurabl eBeanFactory interface (implemented by most of the concrete
BeanFact or y implementations that ship with Spring); this central method is displayed below:

voi d regi sterScope(String scopeNane, Scope scope);

The first argument to the r egi st er Scope(. .) method is the unigue name associated with a scope; examples of
such names in the Spring container itself are ' singl eton' and ' prototype' . The second argument to the
regi st er Scope(..) method is an actual instance of the custom Scope implementation that you wish to register
and use.

Let's assume that you have written your own custom Scope implementation, and you have registered it like so:

/'l note: the ThreadScope cl ass does not ship with the Spring Framework
Scope custonScope = new Thr eadScope();
beanFact ory. regi st er Scope("thread", custonScope);

Y ou can then create bean definitions that adhere to the scoping rules of your custom Scope like so:

<bean id="..." class="..." scope="thread"/>

If you have your own custom Scope implementation(s), you are not just limited to only programmatic
registration of the custom scope(s). You can also do the Scope registration declaratively, using the
Cust onScopeConf i gur er class.

The declarative registration of custom Scope implementations using the Cust onScopeConfigurer class is
shown below:

Spring Framework (2.5.6) 69

The 1oC container

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: aop="http://ww. spri ngframewor k. or g/ schena/ aop"
xsi : schemalLocat i on="
http://ww. spri ngframework. or g/ schenma/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. or g/ schema/ aop http://ww. springframewor k. or g/ schenma/ aop/ spri ng-aop- 2. 5. xsd">

<bean cl ass="org. spri ngframewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property name="scopes">
<n’ap>
<entry key="thread">
<bean cl ass="com f 0o. Thr eadScope"/ >
</entry>
</ map>
</ property>
</ bean>

<bean i d="bar" class="x.y.Bar" scope="thread">
<property name="nanme" val ue="Ri ck"/>
<aop: scoped- pr oxy/ >

</ bean>

<bean i d="fo0" class="x.y.Foo">
<property name="bar" ref="bar"/>
</ bean>

</ beans>

Note

-

e

Note that, when placing a <aop:scoped-proxy/> in a Fact or yBean implementation, it is the factory
bean itself that is scoped, not the object returned from get j ect () .

3.5. Customizing the nature of a bean

3.5.1. Lifecycle callbacks

The Spring Framework provides several callback interfaces to change the behavior of your bean in the
container; they include I nitial i zi ngBean and Di sposabl eBean. Implementing these interfaces will result in
the container calling af t er Properti esSet () for the former and destroy() for the latter to allow the bean to
perform certain actions upon initialization and destruction.

Internally, the Spring Framework uses BeanPost Processor implementations to process any callback interfaces
it can find and call the appropriate methods. If you need custom features or other lifecycle behavior Spring
doesn't offer out-of-the-box, you can implement a BeanPost Processor yourself. More information about this
can be found in the section entitled Section 3.7, “ Container extension points”.

All the different lifecycle callback interfaces are described below. In one of the appendices, you can find
diagrams that show how Spring manages beans, how those lifecycle features change the nature of your beans,
and how they are managed.

3.5.1.1. Initialization callbacks

Implementing the org. springframewor k. beans. factory. InitializingBean interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by the container. The
I'nitializingBean interface specifies exactly one method:

void afterPropertiesSet() throws Exception

Spring Framework (2.5.6) 70

The 1oC container

Generally, the use of the Initializi ngBean interface can be avoided and is actually discouraged since it
unnecessarily couples the code to Spring. As an aternative, bean definitions provide support for a generic
initialization method to be specified. In the case of XML-based configuration metadata, this is done using the
"init-method attribute. For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" init-nethod="init"/>

public class Exanpl eBean {

public void init() {
/1 do sone initialization work
}

..isexactly the same as...

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public cl ass Anot her Exanpl eBean i npl enents InitializingBean {

public void afterPropertiesSet() {
/1 do sone initialization work
}

... but does not couple the code to Spring.

3.5.1.2. Destruction callbacks

Implementing the or g. spri ngf ramewor k. beans. f act ory. Di sposabl eBean interface allows a bean to get a
callback when the container containing it is destroyed. The Di sposabl eBean interface specifies a single
method:

voi d destroy() throws Exception

Generally, the use of the Di sposabl eBean callback interface can be avoided and is actually discouraged since it
unnecessarily couples the code to Spring. As an alternative, bean definitions provide support for a generic
destroy method to be specified. When using XML-based configuration metadata this is done via the
" dest roy- net hod' attribute on the <bean/ >. For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" destroy- met hod="cl eanup"/>

public class Exanpl eBean {

public void cleanup() {
/1 do some destruction work (like rel easing pool ed connections)
}

...isexactly the same as...

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public class Anot her Exanpl eBean i npl ements Di sposabl eBean {

public void destroy() {
/1 do some destruction work (like releasing pool ed connections)

Spring Framework (2.5.6) 71

The 1oC container

... but does not couple the code to Spring.

3.5.1.3. Default initialization & destroy methods

When writing initialization and destroy method callbacks that do not use the Spring-specific I ni ti al i zi ngBean
and Di sposabl eBean callback interfaces, one typically finds oneself writing methods with names such as
init(), initialize(), dispose(), €c. The names of such lifecycle calback methods are (hopefully!)
standardized across a project so that all developers on ateam use the same method names and thus ensure some
level of consistency.

The Spring container can be configured to ' | ook’ for named initialization and destroy callback method names
on every bean. This means that you, as an application developer, can simply write your application classes, use
a convention of having an initialization callback called i ni t (), and then (without having to configure each and
every bean with, in the case of XML-based configuration, an ‘i nit- et hod="init"' attribute) be safe in the
knowledge that the Spring 1oC container will call that method when the bean is being created (and in
accordance with the standard lifecycle callback contract described previously).

Let'slook at an example to make the use of this feature completely clear. For the sake of the example, let us say
that one of the coding conventions on a project is that al initialization callback methods are to be named
i ni t () and that destroy callback methods are to be called dest roy() . Thisleadsto classeslike so...

public class Defaul tBl ogService inplenments Bl ogService {
private Bl ogDao bl ogDao;

public void setBl ogDao(Bl ogDao bl ogDao) {
t hi s. bl ogDao = bl ogDao;
}

/1 this is (unsurprisingly) the initialization callback method
public void init() {
if (this.blogbDao == null) {
throw new ||| egal St at eExcepti on("The [bl ogDao] property nust be set.");
}

<beans defaul t-init-nmethod="init">

<bean i d="bl ogServi ce" class="com f 0o. Def aul t Bl ogServi ce">
<property nanme="bl ogDao" ref="bl ogbDao" />
</ bean>

</ beans>

Notice the use of the' def aul t -i ni t - net hod' attribute on the top-level <beans/ > element. The presence of this
attribute means that the Spring 10C container will recognize a method called ' i nit' on beans as being the
initialization method callback, and when a bean is being created and assembled, if the bean's class has such a
method, it will be invoked at the appropriate time.

Destroy method callbacks are configured similarly (in XML that is) using the ' def aul t - dest r oy- net hod
attribute on the top-level <beans/ > element.

The use of this feature can save you the (small) housekeeping chore of specifying an initialization and destroy
method callback on each and every bean, and it is great for enforcing a consistent naming convention for
initialization and destroy method callbacks, as consistency is something that should always be aimed for.

Spring Framework (2.5.6) 72

The 1oC container

Consider the case where you have some existing beans where the underlying classes already have initialization
callback methods that are named at variance with the convention. You can always override the default by
specifying (in XML that is) the method name using the i ni t - met hod' and ' dest r oy- et hod' attributes on the
<bean/ > element itself.

Finaly, please be aware that the Spring container guarantees that a configured initialization callback is called
immediately after a bean has been supplied with all of its dependencies. This means that the initialization
callback will be called on the raw bean reference, which means that any AOP interceptors or suchlike that will
ultimately be applied to the bean will not yet be in place. A target bean is fully created first, then an AOP proxy
(for example) with its interceptor chain is applied. Note that, if the target bean and the proxy are defined
separately, your code can even interact with the raw target bean, bypassing the proxy. Hence, it would be very
inconsistent to apply the interceptors to the init method, since that would couple the lifecycle of the target bean
with its proxy/interceptors and |eave strange semantics when talking to the raw target bean directly.

3.5.1.4. Combining lifecycle mechanisms

As of Spring 2.5, there are three options for controlling bean lifecycle behavior: the I nitializi ngBean and
Di sposabl eBean callback interfaces; custom init() and destroy() methods; and the @ost Construct and
@r eDest r oy annotations.

When combining different lifecycle mechanisms - for example, in a class hierarchy in which various lifecycle
mechanisms are in use - developers should be aware of the order in which these mechanisms are applied. The
following is the ordering for initialization methods:

* Methods annotated with @ost Const r uct
e afterPropertiesSet () asdefined by thel ni ti al i zi ngBean callback interface
« A custom configuredi ni t () method

Destroy methods are called in the same order:

* Methods annotated with @r eDest r oy
* destroy() asdefined by the bi sposabl eBean callback interface

¢ A custom configured dest r oy() method

Note

"
If multiple lifecycle mechanisms are configured for a given bean, and each mechanism is
configured with a different method name, then each configured method will be executed in the
order listed above; however, if the same method name is configured - for example, i nit () for an
initialization method - for more than one of the af orementioned lifecycle mechanisms, that method
will only be executed once.

3.5.1.5. Shutting down the Spring loC container gracefully in non-web applications

Note

"o
This next section does not apply to web applications (in case the title of this section did not make
that abundantly clear). Spring's web-based Appl i cati onCont ext implementations already have

Spring Framework (2.5.6) 73

The 1oC container

code in place to handle shutting down the Spring 10C container gracefully when the relevant web
application is being shutdown.

If you are using Spring's 10C container in a non-web application environment, for example in a rich client
desktop environment, and you want the container to shutdown gracefully and call the relevant destroy callbacks
on your singleton beans, you will need to register a shutdown hook with the VM. This s quite easy to do (see
below), and will ensure that your Spring 10C container shuts down gracefully and that all resources held by
your singletons are released. Of course it is still up to you to both configure the destroy callbacks for your
singletons and implement such destroy callbacks correctly.

S0 to register a shutdown hook that enables the graceful shutdown of the relevant Spring 10C container, you
smply need to cal the registerShutdownHook() method that is declared on the
Abstract Appl i cati onCont ext class. To wit...

i nport org. springfranework. cont ext. support. Abstract Appl i cati onCont ext ;
i mport org.springframework. cont ext. support. C assPat hXm Appl i cati onCont ext ;

public final class Boot {
public static void main(final String[] args) throws Exception {
Abstract Appl i cati onCont ext ctx
= new Cl assPat hXm Appl i cati onCont ext (new String []{"beans.xm"});

/1 add a shutdown hook for the above context...
ct x. regi st er Shut downHook() ;

/'l app runs here. ..

/1 main method exits, hook is called prior to the app shutting down...

3.5.2. Knowing who you are

3.5.2.1. BeanFact or yAwar e

A class which implementsthe or g. spri ngf r amewor k. beans. f act ory. BeanFact or yAwar e interface is provided
with areference to the BeanFact or y that created it, when it is created by that BeanFact ory.

public interface BeanFactoryAware {

voi d set BeanFact ory(BeanFactory beanFactory) throws BeansExcepti on;

This allows beans to manipulate the BeanFactory that created them programmatically, through the
BeanFact ory interface, or by casting the reference to a known subclass of this which exposes additional
functionality. Primarily this would consist of programmatic retrieval of other beans. While there are cases when
this capability is useful, it should generally be avoided, since it couples the code to Spring and does not follow
the Inversion of Control style, where collaborators are provided to beans as properties.

An alternative option that is equivalent in effect to the BeanFact or yAwar e-based approach is to use the
org. springframewor k. beans. fact ory. confi g. Obj ect Fact or yCr eat i ngFact or yBean. (It should be noted that
this approach still does not reduce the coupling to Spring, but it does not violate the central principle of 10C as
much as the BeanFact or yAwar e-based approach.)

The bj ect Fact or yCr eat i ngFact oryBean iS a Fact or yBean implementation that returns a reference to an
object (factory) that can in turn be used to effect a bean lookup. The bj ect Fact or yCr eat i ngFact or yBean

Spring Framework (2.5.6) 74

The 1oC container

class does itself implement the BeanFact or yAwar e interface; what client beans are actually injected with is an
instance of the aj ect Fact ory interface. This is a Spring-specific interface (and hence there is still no total
decoupling from Spring), but clients can then use the Mj ect Fact or y'S get Obj ect () method to effect the bean
lookup (under the hood the tbj ect Fact or y implementation instance that is returned simply delegates down to a
BeanFactory to actualy lookup a bean by name). All that you need to do is supply the
Qbj ect Fact or yCr eat i ngFact or yBean with the name of the bean that is to be looked up. Let's look at an
example:

package x.y;
public class NewsFeed {
private String news;

public void setNews(String news) {
this. news = news;

}
public String getNews() {
return this.toString() + ": '" + news + "'";
}
}
package x.y;

i mport org.springframework. beans. factory. Obj ect Factory;
public class NewsFeedManager {
private bjectFactory factory;

public void setFactory(ObjectFactory factory) {
this.factory = factory
}

public void printNews() {
/1 here is where the | ookup is perforned; note that there is no
/! need to hard code the nane of the bean that is being | ooked up..
NewsFeed news = (NewsFeed) factory.get Object();
System out. println(news. get News());

Find below the XML configuration to wire together the above classes wusing the
bj ect Fact or yCr eat i ngFact or yBean approach.

<beans>
<bean i d="newsFeedManager" cl ass="x.y. NewsFeedManager" >
<property name="factory">
<bean

cl ass="org. spri ngf ramewor k. beans. f act ory. confi g. Obj ect Fact or yCr eat i ngFact or yBean" >

<property name="t ar get BeanNane" >

<idref |ocal ="newsFeed" />
</ property>

</ bean>
</ property>
</ bean>
<bean i d="newsFeed" cl ass="x.y. NewsFeed" scope="prototype">
<property name="news" value="... that's fit to print!" />
</ bean>
</ beans>

And here is a small driver program to test the fact that new (prototype) instances of the newsFeed bean are
actually being returned for each call to the injected oj ect Fact ory inside the NewsFeedManager 'S pri nt News()
method.

i nport org. springfranework. cont ext. Appl i cati onCont ext ;
i mport org.springframework. cont ext. support.d assPat hXm Appl i cati onCont ext ;

Spring Framework (2.5.6) 75

The 1oC container

i nport x.y.NewsFeedManager ;
public class Main {
public static void main(String[] args) throws Exception {

Appl i cationContext ctx = new C assPat hXm Appli cati onCont ext ("beans. xm ") ;
NewsFeedManager nmanager = (NewsFeedManager) ctx. get Bean("newsFeedMVanager");
manager . pri nt News() ;

manager . pri nt News() ;

The output from running the above program will look like so (results will of course vary on your machine).

X.y. NewsFeed@?292d26: '... that's fit to print!'
X.y. NewsFeed@329c5: '... that's fit to print!’

As of Spring 2.5, you can rely upon autowiring of the BeanFact ory as yet another alternative to implementing
the BeanFact or yAwar e interface. The "traditional” const ruct or and by Type autowiring modes (as described in
the section entitled Section 3.3.5, “Autowiring collaborators’) are now capable of providing a dependency of
type BeanFactory for either a constructor argument or setter method parameter respectively. For more
flexibility (including the ability to autowire fields and multiple parameter methods), consider using the new
annotation-based autowiring features. In that case, the BeanFact ory will be autowired into a field, constructor
argument, or method parameter that is expecting the BeanFact ory type as long as the field, constructor, or
method in question carries the @utowired annotation. For more information, see the section entitled
Section 3.11.2, “@ut owi red”.

3.5.2.2. BeanNaneAwar e

If abean implementsthe or g. spri ngf ranewor k. beans. f act ory. BeanNaneAwar e interface and is deployed in a
BeanFact ory, the BeanFact ory will call the bean through this interface to inform the bean of the name it was
deployed under. The callback will be invoked after population of norma bean properties but before an
initialization callback like 1 ni ti al i zi ngBean's afterPropertiesSet or a custom init-method.

3.6. Bean definition inheritance

A bean definition potentially contains alarge amount of configuration information, including container specific
information (for example initialization method, static factory method name, and so forth) and constructor
arguments and property values. A child bean definition is a bean definition that inherits configuration data from
a parent definition. It is then able to override some values, or add others, as needed. Using parent and child
bean definitions can potentially save alot of typing. Effectively, thisisaform of templating.

When working with a BeanFactory programmatically, child bean definitions are represented by the
Chi | dBeanDef i ni tion class. Most users will never work with them on this level, instead configuring bean
definitions declaratively in something like the Xml BeanFact ory. When using XML-based configuration
metadata a child bean definition is indicated simply by using the ' parent ' attribute, specifying the parent bean
asthe value of this attribute.

<bean id="inheritedTest Bean" abstract="true"
cl ass="org. spri ngf ramewor k. beans. Test Bean" >
<property name="name" val ue="parent"/>
<property nane="age" val ue="1"/>
</ bean>

<bean id="inheritsWthDifferentC ass"
cl ass="org. spri ngframewor k. beans. Deri vedTest Bean"
parent ="inheritedTest Bean" init-nmethod="initialize">

Spring Framework (2.5.6) 76

The 1oC container

<property name="nanme" val ue="override"/>
<l-- the age property value of 1 will be inherited from parent -->

</ bean>

A child bean definition will use the bean class from the parent definition if none is specified, but can also
override it. In the latter case, the child bean class must be compatible with the parent, that is it must accept the
parent's property values.

A child bean definition will inherit constructor argument values, property values and method overrides from the
parent, with the option to add new values. If any init-method, destroy-method and/or st ati ¢ factory method
settings are specified, they will override the corresponding parent settings.

The remaining settings will always be taken from the child definition: depends on, autowire mode, dependency
check, singleton, scope, lazy init.

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the
abstract attribute. In the case that the parent definition does not specify a class, and so explicitly marking the
parent bean definition asabst ract isrequired:

<bean i d="inheritedTest BeanWt hout Cl ass" abstract="true">
<property name="nanme" val ue="parent"/>
<property nane="age" val ue="1"/>

</ bean>

<bean id="inheritsWthC ass" class="org. springframework. beans. Deri vedTest Bean"
parent ="inheritedTest BeanW t hout Cl ass" init-nmethod="initialize">
<property name="nanme" val ue="override"/>
<I-- age will inherit the value of 1 fromthe parent bean definition-->
</ bean>

The parent bean cannot get instantiated on its own since it is incomplete, and it is also explicitly marked as
abstract. When a definition is defined to be abstract like this, it is usable only as a pure template bean
definition that will serve as a parent definition for child definitions. Trying to use such an abst ract parent bean
on its own (by referring to it as a ref property of another bean, or doing an explicit get Bean() call with the
parent bean id), will result in an error. Similarly, the container'sinternal pr el nstant i at eSi ngl et ons() method
will completely ignore bean definitions which are defined as abstract.

Note

"
ApplicationContexts (but not BeanFactories) will by default pre-instantiate all singletons.
Therefore it is important (at least for singleton beans) that if you have a (parent) bean definition
which you intend to use only as a template, and this definition specifies a class, you must make
sure to set the 'abstract' attribute to 'true’, otherwise the application context will actualy (attempt
to) pre-instantiate the abst ract bean.

3.7. Container extension points

The 10C component of the Spring Framework has been designed for extension. There is typically no need for
an application developer to subclass any of the various BeanFact ory Or Appli cati onCont ext implementation
classes. The Spring 10C container can be infinitely extended by plugging in implementations of special
integration interfaces. The next few sections are devoted to detailing al of these various integration interfaces.

Spring Framework (2.5.6) 77

The 1oC container

3.7.1. Customizing beans using BeanPost Processor s

The first extension point that we will look at is the BeanPost Processor interface. This interface defines a
number of callback methods that you as an application developer can implement in order to provide your own
(or override the containers default) instantiation logic, dependency-resolution logic, and so forth. If you want to
do some custom logic after the Spring container has finished instantiating, configuring and otherwise
initializing a bean, you can plug in one or more BeanPost Pr ocessor implementations.

You can configure multiple BeanPost Processors if you wish. You can control the order in which these
BeanPost Processors execute by setting the ‘order’ property (you can only set this property if the
BeanPost Processor implements the O der ed interface; if you write your own BeanPost Processor you should
consider implementing the Ordered interface too); consult the Javadoc for the BeanPost Processor and
O der ed interfaces for more details.

Note

"9
BeanPost Pr ocessor s operate on bean (or object) instances; that is to say, the Spring 1oC container
will have instantiated a bean instance for you, and then BeanPost Processors get a chance to do
their stuff.

If you want to change the actual bean definition (that is the recipe that defines the bean), then you
rather need to use a BeanFact oryPost Processor (described below in the section entitled
Section 3.7.2, “Customizing configuration metadata with BeanFact or yPost Processors”.

Also, BeanPost Processors are scoped per-container. This is only relevant if you are using
container hierarchies. If you define a BeanPost Processor in one container, it will only do its stuff
on the beans in that container. Beans that are defined in another container will not be
post-processed by BeanPost Processor s in another container, even if both containers are part of the
same hierarchy.

The org. spri ngf ramewor k. beans. f act ory. confi g. BeanPost Processor interface consists of exactly two
callback methods. When such a class is registered as a post-processor with the container (see below for how
thisregistration is effected), for each bean instance that is created by the container, the post-processor will get a
callback from the container both before any container initialization methods (such as after PropertiesSet and
any declared init method) are called, and also afterwards. The post-processor is free to do what it wishes with
the bean instance, including ignoring the callback completely. A bean post-processor will typically check for
callback interfaces, or do something such as wrap a bean with a proxy; some of the Spring AOP infrastructure
classes are implemented as bean post-processors and they do this proxy-wrapping logic.

It is important to know that a BeanFactory treats bean post-processors dlightly differently than an
Appl i cationCont ext. AN Appl i cationCont ext Will automatically detect any beans which are defined in the
configuration metadata which is supplied to it that implement the BeanPost Processor interface, and register
them as post-processors, to be then called appropriately by the container on bean creation. Nothing else needs
to be done other than deploying the post-processors in a similar fashion to any other bean. On the other hand,
when using a BeanFact ory implementation, bean post-processors explicitly have to be registered, with code
like this:

Confi gur abl eBeanFactory factory = new Xm BeanFactory(...);

/'l now register any needed BeanPostProcessor instances

MyBeanPost Processor post Processor = new MyBeanPost Processor () ;

factory. addBeanPost Processor (post Processor);

/1 now start using the factory

Spring Framework (2.5.6) 78

The 1oC container

This explicit registration step is not convenient, and this is one of the reasons why the various
Appl i cationCont ext implementations are preferred above plain BeanFact ory implementations in the vast
majority of Spring-backed applications, especially when using BeanPost Pr ocessor s.

BeanPost Processor s and AOP auto-proxying

s

"8

Classes that implement the BeanPost Processor interface are special, and so they are treated
differently by the container. All BeanPost Processors and their directly referenced beans will be
instantiated on startup, as part of the specia startup phase of the Appl i cati onCont ext, then all
those BeanPost Processor s Will be registered in a sorted fashion - and applied to all further beans.
Since AOP auto-proxying is implemented as a BeanPost Pr ocessor itself, no BeanPost Processor s
or directly referenced beans are eligible for auto-proxying (and thus will not have aspects ‘woven'
into them.

For any such bean, you should see an info log message: “ Bean 'foo' is not eligible for getting
processed by all BeanPostProcessors (for example: not eligible for auto-proxying)” .

Find below some examples of how to write, register, and use BeanPost Processors in the context of an
Appl i cati onCont ext .

3.7.1.1. Example: Hello World, BeanPost Processor -Style

This first example is hardly compelling, but serves to illustrate basic usage. All we are going to do is code a
custom BeanPost Processor implementation that simply invokes the t oSt ri ng() method of each bean asiit is
created by the container and prints the resulting string to the system console. Yes, it is not hugely useful, but
serves to get the basic concepts across before we move into the second example which is actually useful.

Find below the custom BeanPost Processor implementation class definition:

package scri pting;

i nport org. springfranework. beans. factory. confi g. BeanPost Processor;
i mport org.springframework. beans. BeansExcepti on;

public class InstantiationTraci ngBeanPost Processor inplenments BeanPost Processor {
/1 sinmply return the instantiated bean as-is

public Object postProcessBeforelnitialization(Object bean, String beanNanme) throws BeansException {
return bean; // we could potentially return any object reference here...

}

public Onject postProcessAfterlnitialization(Object bean, String beanNanme) throws BeansException {
Systemout.printin("Bean '" + beanNane + "' created : " + bean.toString());
return bean;

}

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: | ang="http://ww. spri ngfranmewor k. or g/ schema/ | ang"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
htt p: // ww. spri ngfranewor k. or g/ schena/ | ang http://ww. spri ngfranework. org/ schena/| ang/ spri ng-1 ang- 2. 5. xsd" >

<l ang: groovy i d="nmessenger"
scri pt - sour ce="cl asspat h: org/ spri ngf ramewor k/ scri pti ng/ gr oovy/ Messenger. gr oovy" >
<l ang: property nanme="nessage" val ue="Fiona Apple |Is Just So Dreany."/>
</l ang: gr oovy>

<I--
when the above bean (' nmessenger') is instantiated, this custom
BeanPost Processor i npl enentation will output the fact to the system console

Spring Framework (2.5.6) 79

The 1oC container

-->
<bean cl ass="scripting.InstantiationTraci ngBeanPost Processor"/>

</ beans>

Notice how the | nst ant i at i onTr aci ngBeanPost Processor iSssimply defined; it doesn't even have a name, and
becauseit is abean it can be dependency injected just like any other bean. (The above configuration also just so
happens to define a bean that is backed by a Groovy script. The Spring 2.0 dynamic language support is
detailed in the chapter entitled Chapter 24, Dynamic language support.)

Find below asmall driver script to exercise the above code and configuration;

i mport org.springframework. cont ext. Appl i cati onCont ext ;
i nport org.springfranework. cont ext. support.C assPat hXm Appl i cati onCont ext ;
i mport org.springframework. scripting. Messenger;

public final class Boot {

public static void main(final String[] args) throws Exception {
ApplicationContext ctx = new C assPat hXm Appli cati onCont ext ("scri pting/beans. xm");
Messenger nmessenger = (Messenger) ctx.getBean("nmessenger");
System out. printl n(nmessenger);

The output of executing the above program will be (something like) this:

Bean ' nessenger' created : org.springframework. scripting.groovy. G oovyMessenger @72961
org. springframework. scripting. groovy. GoovyMessenger @72961

3.7.1.2. Example: The Requi r edAnnot at i onBeanPost Pr ocessor

Using callback interfaces or annotations in conjunction with a custom BeanPost Pr ocessor implementation is a
common means of extending the Spring 10C container. This next example is a bit of a cop-out, in that you are
directed to the section entitled Section 25.3.1, “@equi red” which demonstrates the usage of a custom
BeanPost Processor implementation that ships with the Spring distribution which ensures that JavaBean
properties on beans that are marked with an (arbitrary) annotation are actualy (configured to be)
dependency-injected with avalue.

3.7.2. Customizing configuration metadata with BeanFact or yPost Processor s

The next extension point that we will look at is the
org. spri ngframewor k. beans. fact ory. confi g. BeanFact or yPost Processor . The semantics of this interface
are similar to the BeanPost Pr ocessor , With one mgjor difference: BeanFact or yPost Processor s operate on the
bean configuration metadata; that is, the Spring 10C container will allow BeanFact or yPost Processor s to read
the configuration metadata and potentially change it before the container has actually instantiated any other
beans.

Y ou can configure multiple BeanFact or yPost Processor s if you wish. You can control the order in which these
BeanFact or yPost Processors execute by setting the ' order' property (you can only set this property if the
BeanFact or yPost Processor implements the Odered interfface; if you write your own
BeanFact or yPost Processor you should consider implementing the o der ed interface too); consult the Javadoc
for the BeanFact or yPost Processor and Or der ed interfaces for more detalls.

Note

.

"8

If you want to change the actual bean instances (the objects that are created from the configuration

Spring Framework (2.5.6) 80

The 1oC container

metadata), then you rather need to use a BeanPost Processor (described above in the section
entitled Section 3.7.1, “Customizing beans using BeanPost Pr ocessors”.

Also, BeanFact or yPost Processor s are scoped per-container. Thisisonly relevant if you are using
container hierarchies. If you define a BeanFact or yPost Processor in one container, it will only do
its stuff on the bean definitions in that container. Bean definitions in another container will not be
post-processed by BeanFact or yPost Processors in another container, even if both containers are
part of the same hierarchy.

A bean factory post-processor is executed manually (in the case of aBeanFact ory) or automatically (in the case
of an ApplicationContext) to apply changes of some sort to the configuration metadata that defines a
container. Spring includes a number of preexisting bean factory post-processors, such as
PropertyOverrideConfigurer and PropertyPl acehol der Configurer, both described below. A custom
BeanFact or yPost Processor can also be used to register custom property editors, for example.

In aBeanFact ory, the process of applying aBeanFact or yPost Processor iSmanual, and will be similar to this:

Xm BeanFactory factory = new Xm BeanFact ory(new Fi |l eSyst enResour ce("beans. xm ")) ;

/1 bring in sone property values froma Properties file
Propert yPl acehol der Confi gurer cfg = new PropertyPl acehol der Confi gurer();
cfg.setlLocation(new Fi | eSyst enResource("j dbc. properties"));

/1 now actually do the repl acenent
cf g. post ProcessBeanFact ory(factory);

This explicit registration step is not convenient, and this is one of the reasons why the various
Appl i cationCont ext implementations are preferred above plain BeanFact ory implementations in the vast
majority of Spring-backed applications, especially when using BeanFact or yPost Processors.

An ApplicationContext Will detect any beans which are deployed into it which implement the
BeanFact or yPost Processor interface, and automatically use them as bean factory post-processors, at the
appropriate time. Nothing else needs to be done other than deploying these post-processor in a similar fashion
to any other bean.

Note

s

"8

Just as in the case of BeanPostProcessors, Yyou typicaly dont want to have
BeanFact or yPost Processors marked as being lazily-initialized. If they are marked as such, then
the Spring container will never instantiate them, and thus they won't get a chance to apply their
custom logic. If you are using the ' defaul t-1azy-init' attribute on the declaration of your
<beans/ > element, be sure to mark your various BeanFact or yPost Processor bean definitions with
"lazy-init="fal se"".

3.7.2.1. Example: the PropertyPl acehol der Confi gur er

The PropertyPl acehol der Confi gurer is used to externalize property values from a BeanFact ory definition,
into another separate file in the standard Java Pr oper ti es format. Thisis useful to allow the person deploying
an application to customize environment-specific properties (for example database URLS, usernames and
passwords), without the complexity or risk of modifying the main XML definition file or files for the container.

Consider the following XML-based configuration metadata fragment, where a Dat aSour ce with placeholder
values is defined. We will configure some properties from an external properti es file, and at runtime, we will
apply a PropertyPl acehol der Configurer to the metadata which will replace some properties of the

Spring Framework (2.5.6) 81

The 1oC container

DataSource:

<bean cl ass="org. spri ngframewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="| ocati ons">
<val ue>cl asspat h: coni f oo/ j dbc. properti es</val ue>
</ property>
</ bean>

<bean i d="dat aSour ce" destroy-nethod="cl ose"
cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" >
<property nanme="driver Cl assNane" val ue="${j dbc. dri ver Cl assNane}"/ >
<property name="url" val ue="${jdbc.url}"/>
<property nanme="usernane" val ue="${j dbc. usernane}"/>
<property nane="password" val ue="${j dbc. password}"/>
</ bean>

The actual values come from another file in the standard Java pr oper ti es format:

j dbc. dri verd assNanme=or g. hsql db. j dbcDri ver
j dbc. url =j dbc: hsql db: hsql : // producti on: 9002
j dbc. user nane=sa

j dbc. passwor d=r oot

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property placeholders with a
dedicated configuration element. Multiple locations may be provided as a comma-separated list for the
| ocat i on attribute.

<cont ext : property-pl acehol der | ocation="cl asspat h: conf f oo/ j dbc. properties"/>

The Pr opert yPl acehol der Confi gurer doesn't only look for propertiesin the Properti es file you specify, but
also checks against the Java Syst em properties if it cannot find a property you are trying to use. This behavior
can be customized by setting the syst enProperti esMode property of the configurer. It has three values, one to
tell the configurer to always override, one to let it never override and one to let it override only if the property
cannot be found in the properties file specified. Please consult the Javadoc for the
Pr oper t yPl acehol der Confi gur er for more information.

Class name substitution

-

e

The Propert yPl acehol der Confi gurer can be used to substitute class names, which is sometimes
useful when you have to pick a particular implementation class at runtime. For example:

<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property nanme="| ocati ons">
<val ue>cl asspat h: coni f oo/ strat egy. properties</val ue>
</ property>
<property name="properties">
<val ue>cust om strat egy. cl ass=com f oo. Def aul t St r at egy</ val ue>
</ property>
</ bean>

<bean id="serviceStrategy" class="%${custom strategy.class}"/>

If the class is unable to be resolved at runtime to a valid class, resolution of the bean will fail once
it is about to be created (which is during the prelnstantiateSingletons() phase of an
Appl i cati onCont ext for anon-lazy-init bean.)

3.7.2.2. Example: the PropertyOverri deConfi gurer

The PropertyOverrideConfigurer, another bean factory post-processor, is similar to the

Spring Framework (2.5.6) 82

The 1oC container

Proper t yPl acehol der Confi gurer, but in contrast to the latter, the original definitions can have default values
or no values at all for bean properties. If an overriding Properti es file does not have an entry for a certain bean
property, the default context definition is used.

Note that the bean factory definition is not aware of being overridden, so it is not immediately obvious when
looking at the XML definition file that the override configurer is being used. In case that there are multiple
PropertyOverri deConfi gurer instances that define different values for the same bean property, the last one
will win (due to the overriding mechanism).

Properties file configuration lines are expected to be in the format:

beanNane. pr opert y=val ue

An example properties file might look like this:

dat aSour ce. dri ver C assNane=com nysql . j dbc. Dri ver
dat aSour ce. ur|l =j dbc: nmysqgl : mydb

This example file would be usable against a container definition which contains a bean called dataSource,
which has driver and url properties.

Note that compound property names are also supported, as long as every component of the path except the final
property being overridden is already non-null (presumably initialized by the constructors). In this example...

foo. fred. bob. sammy=123
... the sammy property of the bob property of the fred property of the f oo bean is being set to the scalar value
123.

Note: Specified override values are always literal values; they are not trandated into bean references. This also
applies when the original valuein the XML bean definition specifies a bean reference

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property overriding with a
dedicated configuration element:

<cont ext: property-override | ocati on="cl asspat h: overri de. properties"/>

3.7.3. Customizing instantiation logic using Fact or yBeans

The org. spri ngframewor k. beans. f act ory. Fact or yBean interface is to be implemented by objects that are
themsel ves factories.

The Fact or yBean interface is a point of pluggability into the Spring 10C containers instantiation logic. If you
have some complex initialization code that is better expressed in Java as opposed to a (potentially) verbose
amount of XML, you can create your own Fact or yBean, Write the complex initialization inside that class, and
then plug your custom Fact or yBean into the container.

The Fact or yBean interface provides three methods:

e (Object getject(): hasto return an instance of the object this factory creates. The instance can possibly
be shared (depending on whether this factory returns singletons or prototypes).

* bool ean isSingleton(): hastoreturntrue if thisFact or yBean returns singletons, f al se otherwise

Spring Framework (2.5.6) 83

The 1oC container

e Cass getQbj ect Type(): hasto return either the object type returned by the get Qbj ect () method or nul | if
the type isn't known in advance

The Fact or yBean concept and interface is used in a number of places within the Spring Framework; at the time
of writing there are over 50 implementations of the Fact or yBean interface that ship with Spring itself.

Finally, there is sometimes a need to ask a container for an actual Fact or yBean instance itself, not the bean it
produces. This may be achieved by prepending the bean id with * & (sans quotes) when calling the get Bean
method of the BeanFactory (including ApplicationContext). So for a given Fact oryBean with an id of
nyBean, invoking get Bean("nmyBean") on the container will return the product of the FactoryBean, but
invoking get Bean(" &yBean") Will return the Fact or yBean instance itself.

3.8. The Appl i cati onCont ext

While the beans package provides basic functionality for managing and manipulating beans, including in a
programmatic way, the context package adds the ApplicationContext interface, which enhances
BeanFact ory functionality in a more framework-oriented style. Many users will use Appl i cati onContext ina
completely declarative fashion, not even having to create it manually, but instead relying on support classes
such as Cont ext Loader to automatically instantiate an Appli cati onContext as part of the normal startup
process of a J2EE web-app. (Of courseg, it is still possible to create an Appl i cat i onCont ext programmatically.)

The basis for the context package is the ApplicationContext interface, located in the
org. springframewor k. context package. Deriving from the BeanFactory interface, it provides all the
functionality of BeanFactory. To allow working in a more framework-oriented fashion, using layering and
hierarchical contexts, the context package also provides the following functionality:

* MessageSour ce, providing access to messagesin i18n-style.
» Access to resources, such as URLs and files.
« Event propagation to beans implementing the Appl i cat i onLi st ener interface.

« Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, for example
the web layer of an application.

3.8.1. BeanFact ory Or Appl i cati onCont ext ?

Short version: use an Appl i cat i onCont ext Unless you have a really good reason for not doing so. For those of
you that are looking for slightly more depth as to the 'but why' of the above recommendation, keep reading.

Asthe Appl i cati onCont ext includes al functionality of the BeanFact ory, it is generally recommended that it
be used in preference to the BeanFact ory, except for a few limited situations such as in an Appl et , where
memory consumption might be critical and a few extra kilobytes might make a difference. However, for most
‘typical’ enterprise applications and systems, the Appl i cati onCont ext iSwhat you will want to use. Versions of
Spring 2.0 and above make heavy use of the BeanPost Processor extension point (to effect proxying and
suchlike), and if you are using just a plain BeanFact or y then afair amount of support such as transactions and
AOP will not take effect (at least not without some extra steps on your part), which could be confusing because
nothing will actually be wrong with the configuration.

Find below a feature matrix that lists what features are provided by the BeanFact ory and Appl i cat i onCont ext
interfaces (and attendant implementations). (The following sections describe functionaity that

Spring Framework (2.5.6) 84

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/ApplicationContext.html

The 1oC container

Appl i cationCont ext adds to the basic BeanFact ory capabilities in a lot more depth than the said feature
matrix.)

Table 3.5. Feature Matrix

Feature BeanFact ory Appl i cat i onCont ext
Bean instantiation/wiring Yes Yes
Automatic BeanPost Pr ocessor No Yes
registration
Automatic No Yes
BeanFact or yPost Pr ocessor
registration
Convenient MessageSour ce acCess No Yes
(for i18n)
Appl i cati onEvent publication No Yes

3.8.2. Internationalization using MessageSour ces

The ApplicationContext interface extends an interface called MessageSource, and therefore provides
messaging (i18n or internationalization) functionality. Together with the Hi er ar chi cal MessageSour ce, capable
of resolving hierarchical messages, these are the basic interfaces Spring provides to do message resolution.
Let's quickly review the methods defined there:

* String getMessage(String code, Object[] args, String default, Locale |oc): the basic method
used to retrieve a message from the MessageSour ce. When no message is found for the specified locale, the
default message is used. Any arguments passed in are used as replacement values, using the MessageFor mat
functionality provided by the standard library.

e String get Message(String code, Cbject[] args, Locale |oc): essentially the same as the previous
method, but with one difference: no default message can be specified; if the message cannot be found, a
NoSuchMessageExcept i on isthrown.

e String getMessage(MessageSour ceResol vabl e resol vabl e, Local e |ocale): al properties used in the
methods above are also wrapped in a class nhamed MessageSour ceResol vabl e, which you can use via this
method.

When an Appl i cati onCont ext gets loaded, it automatically searches for a MessageSour ce bean defined in the
context. The bean has to have the name ' messageSour ce' . If such a bean is found, all calls to the methods
described above will be delegated to the message source that was found. If no message source was found, the
Appl i cati onCont ext attempts to seeif it has a parent containing a bean with the same name. If so, it uses that
bean as the MessageSour ce. If it can't find any source for messages, an empty Del egat i ngMessageSour ce Will
be instantiated in order to be able to accept calls to the methods defined above.

Spring currently provides two MessageSour ce implementations. These are the Resour ceBundl eMessageSour ce

Spring Framework (2.5.6) 85

The 1oC container

and the st at i cMessageSour ce. Both implement Hi er ar chi cal MessageSour ce in order to do nested messaging.
The st ati cMessageSour ce is hardly ever used but provides programmatic ways to add messages to the source.
The Resour ceBundl eMessageSour ce iSmore interesting and is the one we will provide an example for:

<beans>
<bean i d="nessageSour ce"
cl ass="org. spri ngfranmewor k. cont ext . support. Resour ceBundl eMessageSour ce" >
<property name="basenanes" >
<list>
<val ue>f or mat </ val ue>
<val ue>excepti ons</ val ue>
<val ue>w ndows</ val ue>
</list>
</ property>
</ bean>
</ beans>

This assumes you have three resource bundles defined on your classpath called format, exceptions and
wi ndows. Using the JDK standard way of resolving messages through ResourceBundles, any request to resolve
a message will be handled. For the purposes of the example, lets assume the contents of two of the above
resource bundlefiles are...

in 'format.properties
nmessage=Al | i gators rock!

in 'exceptions.properties
argunent . requi red=The ' {0}' argunment is required.

Some (admittedly trivial) driver code to exercise the MessageSource functionality can be found below.
Remember that all Appl i cati onCont ext implementations are also MessageSour ce implementations and so can
be cast to the MessageSour ce interface.

public static void main(String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ") ;
String nessage = resources. get Message(" nmessage", null, "Default", null);
System out . printl n(message) ;

The resulting output from the above program will be...

Alligators rock

So to summarize, the MessageSour ce isdefined in afile called ' beans. xm * (thisfile exists at the root of your
classpath). The ' nessageSour ce' bean definition refers to a number of resource bundles via its basenanes
property; the three files that are passed in the list to the basenanes property exist as files at the root of your
classpath (and are called format.properties, exceptions.properties, and w ndows. properties
respectively).

Lets look at another example, and this time we will ook at passing arguments to the message lookup; these
arguments will be converted into Strings and inserted into placeholders in the lookup message. This is perhaps
best explained with an example:

<beans>

<I-- this MessageSource i S being used in a web application -->

<bean i d="nessageSour ce" cl ass="org. spri ngframework. context. support.ResourceBundl eMessageSour ce" >
<property name="basenane" val ue="t est-nmessages"/>

</ bean>

<l-- let's inject the above MssageSource into this PQJO -->
<bean i d="exanpl e" cl ass="com fo0o. Exanpl e" >

Spring Framework (2.5.6) 86

The 1oC container

<property name="nessages" ref="nessageSource"/>
</ bean>

</ beans>

public class Exanple {
private MessageSource nessages;

public void set Messages(MessageSour ce nmessages) {
t hi s. ressages = nmessages;
}

public void execute() {
String nessage = this.nessages. get Message("argunent . required",
new Object [] {"userDao"}, "Required", null);
System out . printl n(message) ;

The resulting output from the invocation of the execut e() method will be...

The 'userDao' argunent is required.

With regard to internationalization (i18n), Spring's various MessageResour ce implementations follow the same
locale resolution and fallback rules as the standard JDK Resour ceBundl e. In short, and continuing with the
example ' nessageSour ce' defined previously, if you want to resolve messages against the British (en-GB)
locale, you would create files called fornmat_en_GB. properties, exceptions_en_GB.properties, and
wi ndows_en_GB. properti es respectively.

Locale resolution is typically going to be managed by the surrounding environment of the application. For the
purpose of this example though, we'll just manually specify the locale that we want to resolve our (British)

messages against.

in 'exceptions_en_GB. properties'
argunent . requi red=Ebagum | ad, the '{0}' argument is required, | say, required.

public static void main(final String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ") ;
String nessage = resources. get Message("argunent.required",
new Object [] {"userDao"}, "Required", Locale.UK);
System out . printl n(message) ;

The resulting output from the running of the above program will be...

Ebagum | ad, the 'userDao' argunent is required, | say, required.

The MessageSour ceAwar e interface can also be used to acquire a reference to any MessageSour ce that has been
defined. Any bean that is defined in an ApplicationContext that implements the MessageSour ceAwar e
interface will be injected with the application context's MessageSour ce when it (the bean) is being created and
configured.

Notee As an alternative tO0 ResourceBundl eMessageSource, Spring also provides a
Rel oadabl eResour ceBundl eMessageSour ce class. This variant supports the same bundle file format but is
more flexible than the standard JDK based Resour ceBundl eMessageSour ce implementation. In particular, it
allows for reading files from any Spring resource location (not just from the classpath) and supports hot
reloading of bundle property files (while efficiently caching them in between). Check out the

Spring Framework (2.5.6) 87

The 1oC container

Rel oadabl eResour ceBundl eMessageSour ce javadoc for details.

3.8.3. Events

Event handling in the ApplicationContext is provided through the ApplicationEvent class and
Appl i cati onLi st ener interface. If a bean which implements the Appl i cati onLi st ener interface is deployed
into the context, every time an Appl i cat i onEvent gets published to the Appl i cati onCont ext , that bean will be
notified. Essentidly, this is the standard Observer design pattern. Spring provides the following standard
events:

Table 3.6. Built-in Events

Event Explanation

Cont ext Ref r eshedEvent Published when the ApplicationContext is initialized or refreshed, e.g.
using the refresh() method on the Confi gurabl eAppl i cati onCont ext
interface. "Initialized" here means that all beans are loaded, post-processor
beans are detected and activated, singletons are pre-instantiated, and the
Appl i cationContext object is ready for use. A refresh may be triggered
multiple times, as long as the context hasn't been closed - provided that the
chosen ApplicationContext actually supports such "hot" refreshes (which
€e.g. Xml WebApplicationContext does but GenericApplicationContext
doesn't).

Cont ext St art edEvent Published when the ApplicationContext is started, using the start()
method on the Confi gur abl eAppl i cati onCont ext interface. "Started" here
means that al Li f ecycl e beans will receive an explicit start signal. This will
typically be used for restarting after an explicit stop, but may aso be used for
starting components that haven't been configured for autostart (e.g. haven't
started on initialization already).

Cont ext St oppedEvent Published when the ApplicationContext iS stopped, using the stop()
method on the Confi gur abl eAppl i cati onCont ext interface. "Stopped” here
means that all Li f ecycl e beans will receive an explicit stop signal. A stopped
context may be restarted through ast art () call.

Cont ext Cl osedEvent Published when the ApplicationContext is closed, using the close()
method on the Confi gur abl eAppl i cati onCont ext interface. "Closed" here
means that all singleton beans are destroyed. A closed context has reached its
end of life; it cannot be refreshed or restarted.

Request Handl edEvent A web-specific event telling all beans that an HTTP request has been serviced
(this will be published after the request has been finished). Note that this
event is only applicable for web applications using Spring's

Di spat cher Servl et .

Implementing custom events can be done as well. Simply call the publishEvent() method on the
Appl i cati onCont ext , Specifying a parameter which is an instance of your custom event class implementing
Appl i cationEvent . Event listeners receive events synchronously. This means the publ i shEvent () method
blocks until all listeners have finished processing the event (it is possible to supply an alternate event
publishing strategy via a ApplicationEvent Ml ticaster implementation). Furthermore, when a listener
receives an event it operates inside the transaction context of the publisher, if atransaction context is available.

Spring Framework (2.5.6) 88

The 1oC container

Let'slook at an example. First, the Appl i cat i onCont ext :

<bean i d="email er" cl ass="exanpl e. Emai | Bean" >
<property nanme="bl ackLi st">
<list>
<val ue>bl ack@i st . or g</ val ue>
<val ue>white@i st . or g</ val ue>
<val ue>j ohn@loe. or g</ val ue>
</list>
</ property>
</ bean>

<bean id="bl ackLi stListener" class="exanpl e. Bl ackLi stNotifier">
<property name="notificati onAddress" val ue="spam@ist.org"/>
</ bean>

Now, let's look at the actual classes:

public class Email Bean i npl ements ApplicationContextAware {

private List blackList;
private ApplicationContext ctx;

public void setBl ackLi st (List blackList) {
this. bl ackLi st = bl ackLi st;

}

public void setApplicationContext (ApplicationContext ctx) {
this.ctx = ctx;

}

public void sendEmail (String address, String text) {
i f (bl ackList.contains(address)) {
Bl ackLi st Event event = new Bl ackLi st Event (address, text);
ct x. publ i shEvent (event);
return;

/] send email...

public class Bl ackListNotifier inplements ApplicationListener {
private String notificationAddress;

public void setNotificationAddress(String notificati onAddress) {
this.notificati onAddress = notificati onAddress;

}

public void onApplicationEvent (Applicati onEvent event) {
if (event instanceof Bl ackListEvent) {
// notify appropriate person...
}

Of course, this particular example could probably be implemented in better ways (perhaps by using AOP
features), but it should be sufficient to illustrate the basic event mechanism.

3.8.4. Convenient access to low-level resources

For optimal usage and understanding of application contexts, users should generally familiarize themselves
with Spring's Resour ce abstraction, as described in the chapter entitled Chapter 4, Resour ces.

An application context is a Resour ceLoader , able to be used to load Resour ceS. A Resource is essentially a
java. net. URL on steroids (in fact, it just wraps and uses a URL where appropriate), which can be used to

Spring Framework (2.5.6) 89

The 1oC container

obtain low-level resources from almost any location in a transparent fashion, including from the classpath, a
filesystem location, anywhere describable with a standard URL, and some other variations. If the resource
location string is a ssimple path without any special prefixes, where those resources come from is specific and
appropriate to the actual application context type.

A bean deployed into the application context may implement the special callback interface,
Resour ceLoader Awar e, t0 be automatically called back at initialization time with the application context itself
passed in as the Resour ceLoader. A bean may also expose properties of type Resour ce, to be used to access
static resources, and expect that they will be injected into it like any other properties. The person deploying the
bean may specify those Resource properties as simple String paths, and rely on a specia JavaBean
Propert yEdi t or that is automatically registered by the context, to convert those text strings to actual Resour ce
objects.

The location path or paths supplied to an Appl i cati onCont ext constructor are actually resource strings, and in
smple form are treated appropriately to the specific context implementation (
C assPat hXxnl Appl i cati onCont ext treats a simple location path as a classpath location), but may also be used
with special prefixes to force loading of definitions from the classpath or a URL, regardless of the actua
context type.

3.8.5. Convenient Appl i cati onCont ext instantiation for web applications

As opposed to the BeanFact or y, which will often be created programmatically, Appl i cati onCont ext instances
can be created declaratively using for example a ContextLoader. Of course you can aso create
Appl i cati onCont ext instances programmatically using one of the ApplicationContext implementations.
First, let's examine the Cont ext Loader mechanism and itsimplementations.

The ContextLoader mechanism comes in two flavors. the ContextLoaderListener and the
Cont ext Loader Ser vl et . They both have the same functionality but differ in that the listener version cannot be
reliably used in Servlet 2.3 containers. Since the Servlet 2.4 specification, servlet context listeners are required
to execute immediately after the serviet context for the web application has been created and is available to
service the first request (and also when the servlet context is about to be shut down): as such a servlet context
listener is an ideal place to initialize the Spring Appl i cat i onCont ext . It iS up to you as to which one you use,
but al things being equal you should probably prefer Cont ext Loader Li st ener; for more information on
compatibility, have alook at the Javadoc for the Cont ext Loader Ser vl et .

Y ou can register an Appl i cat i onCont ext USing the Cont ext Loader Li st ener asfollows:

<cont ext - par an>

<par am nane>cont ext Conf i gLocat i on</ par am nane>

<par am val ue>/ WEB- | NF/ daoCont ext . xml /WEB- | NF/ appl i cati onCont ext . xml </ par am val ue>
</ cont ext - par an>

<listener>
<l i stener-class>org. springfranmewor k. web. cont ext. Cont ext Loader Li st ener</1i st ener-cl ass>
</listener>

<l-- or use the ContextLoaderServiet instead of the above |istener

<servl et >
<servl et - name>cont ext </ servl et - nanme>
<servl et - cl ass>or g. spri ngf ramewor k. web. cont ext . Cont ext Loader Ser vl et </ servl et - cl ass>
<| oad- on- st artup>1</1 oad-on-start up>

</servl et>

S

The listener inspectsthe ' cont ext Conf i gLocati on' parameter. If the parameter does not exist, the listener will
use / WEB- | NF/ appl i cati onCont ext. xn as a default. When it does exist, it will separate the String using
predefined delimiters (comma, semicolon and whitespace) and use the values as locations where application
contexts will be searched for. Ant-style path patterns are supported as well: e.g. / WVEB- | NF/ * Cont ext . xmi (for

Spring Framework (2.5.6) 90

The 1oC container

al files whose name ends with "Contextxml”, residing in the "WEB-INF" directory) or
/ VEB- | NF/ ** [*Cont ext . xm (for al such filesin any subdirectory of "WEB-INF").

The Cont ext Loader Servl et can be used instead of the Cont ext Loader Li st ener. The servlet will use the
' cont ext Confi gLocati on' parameter just asthe listener does.

3.9. Glue code and the evil singleton

The magjority of the code inside an application is best written in a DI style, where that code is served out of a
Spring 10C container, has its own dependencies supplied by the container when it is created, and is completely
unaware of the container. However, for the small glue layers of code that are sometimes needed to tie other
code together, there is sometimes a need for singleton (or quasi-singleton) style access to a Spring |oC
container. For example, third party code may try to construct new objects directly (C ass. f or Name() style),
without the ability to force it to get these objects out of a Spring |oC container. If the object constructed by the
third party code isjust a small stub or proxy, which then uses a singleton style access to a Spring 10C container
to get areal object to delegate to, then inversion of control has still been achieved for the majority of the code
(the object coming out of the container); thus most code is still unaware of the container or how it is accessed,
and remains decoupled from other code, with all ensuing benefits. EJBs may also use this stub/proxy approach
to delegate to a plain Java implementation object, coming out of a Spring 10C container. While the Spring 10C
container itself ideally does not have to be a singleton, it may be unredlistic in terms of memory usage or
initialization times (when using beans in the Spring 10C container such as a Hibernate Sessi onFact ory) for
each bean to use its own, non-singleton Spring 10C container.

As another example, in complex J2EE applications with multiple layers (various JAR files, EJBs, and WAR
files packaged as an EAR), with each layer having its own Spring 10C container definition (effectively forming
a hierarchy), the preferred approach when there is only one web-app (WAR) in the top hierarchy is to simply
create one composite Spring 10C container from the multiple XML definition files from each layer. All of the
various Spring 10C container implementations may be constructed from multiple definition files in this fashion.
However, if there are multiple sibling web-applications at the root of the hierarchy, it is problematic to create a
Spring 10C container for each web-application which consists of mostly identical bean definitions from lower
layers, as there may be issues due to increased memory usage, issues with creating multiple copies of beans
which take a long time to initialize (for example a Hibernate Sessi onFact ory), and possible issues due to
side-effects. As an adternative, classes such as ContextSingl et onBeanFactorylocator OF
Si ngl et onBeanFact or yLocat or may be used to demand-load multiple hierarchical (that is one container is the
parent of another) Spring 10C container instances in a singleton fashion, which may then be used as the parents
of the web-application Spring 10C container instances. The result is that bean definitions for lower layers are
loaded only as needed, and |oaded only once.

You can see a detailed example of the usage of these classes by viewing the Javadoc for the
SingletonBeanFactoryl ocator and ContextSingletonBeanFactoryl ocator classes. As mentioned in the chapter
on EJBs, the Spring convenience base classes for EJBs normally use a non-singleton BeanFact or yLocat or
implementation, which is easly replaced by the use of SingletonBeanFactoryLocator and
Cont ext Si ngl et onBeanFact oryLocat or .

3.10. Deploying a Spring ApplicationContext as a J2EE RAR
file
Since Spring 2.5, it is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating the context

and all of its required bean classes and library JARs in a J2EE RAR deployment unit. This is the equivalent of
bootstrapping a standal one ApplicationContext, just hosted in J2EE environment, being able to access the J2EE

Spring Framework (2.5.6) 91

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html

The 1oC container

server's facilities. RAR deployment is intended as a more 'natural’ aternative to the not uncommon scenario of
deploying a headless WAR file - i.e. aWAR file without any HTTP entry points, just used for bootstrapping a
Spring ApplicationContext in a J2EE environment.

RAR deployment isideal for application contexts that do not need any HTTP entry points but rather just consist
of message endpoints and scheduled jobs etc. Beans in such a context may use application server resources
such as the JTA transaction manager and JNDI-bound JDBC DataSources and JMS ConnectionFactory
instances, and may aso register with the platform's IMX server - al through Spring's standard transaction
management and JNDI and JMX support facilities. Application components may aso interact with the
application's server JCA WorkManager through Spring's TaskExecut or abstraction.

Check out the JavaDoc of the SpringContextResourceAdapter class for the configuration details involved in
RAR deployment.

For simple deployment needs, all you need to do is the following: Package all application classes into a RAR
file (which is just a standard JAR file with a different file extension), add all required library jars into the root
of the RAR archive, add a "META-INFfraxml" deployment descriptor (as shown in
Spri ngCont ext Resour ceAdapt er 's JavaDoc) as well as the corresponding Spring XML bean definition file(s)
(typically "META-INF/applicationContext.xml"), and drop the resulting RAR file into your application server's
deployment directory!

NOTE: Such RAR deployment units are usually self-contained; they do not expose components to the ‘outside’
world, not even to other modules of the same application. Interaction with a RAR-based ApplicationContext
usually happens through JM S destinations that it shares with other modules. A RAR-based ApplicationContext
may also - for example - schedule some jobs, reacting to new files in the file system (or the like). If it actually
needs to allow for synchronous access from the outside, it could for example export RMI endpoints, which of
course may be used by other application modules on the same machine as well.

3.11. Annotation-based configuration

As mentioned in the section entitled Section 3.7.1.2, “Example: The
Requi r edAnnot at i onBeanPost Processor”, USINg a BeanPost Processor iN conjunction with annotations is a
common means of extending the Spring 10C container. For example, Spring 2.0 introduced the possibility of
enforcing required properties with the @Required annotation. As of Spring 2.5, it is now possible to follow that
same genera approach to drive Spring's dependency injection. Essentialy, the @ut owi r ed annotation provides
the same capabilities as described in Section 3.3.5, “Autowiring collaborators’ but with more fine-grained
control and wider applicability. Spring 2.5 also adds support for JSR-250 annotations such as @resour ce,
@ost Const ruct , and @r eDest r oy. Of course, these options are only available if you are using at least Java 5
(Tiger) and thus have access to source level annotations. Use of these annotations also requires that certain
BeanPost Processor s be registered within the Spring container. As always, these can be registered asindividual
bean definitions, but they can also be implicitly registered by including the following tag in an XML-based
Spring configuration (notice the inclusion of the 'cont ext ' namespace):

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranework. or g/ schema/ cont ext "
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schenma/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. spri ngfranework. or g/ schena/ cont ext/ spri ng- cont ext -2. 5. xsd" >

<cont ext : annot ati on- confi g/ >

</ beans>

Spring Framework (2.5.6) 92

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jca/context/SpringContextResourceAdapter.html

The 1oC container

(The implicitly registered post-processors include Aut owi r edAnnot at i onBeanPost Processor,
ConmmonAnnot at i onBeanPost Processor, Persi stenceAnnot ati onBeanPost Processor, as well as the

aforementioned Requi r edAnnot at i onBeanPost Pr ocessor .)

Note

s

"8

Note that <context: annotation-config/> only looks for annotations on beans in the same
application context it is defined in. This means that, if you put <cont ext : annot at i on-confi g/ > in
aWebAppl i cationCont ext for abDi spat cher Servl et it only checks for @ut owi red beans in your
controllers, and not your services. See Section 13.2, “The DispatcherServiet” for more
information.

3.11.1. @required

The @equi r ed annotation applies to bean property setter methods, asin the following example:

public class SinpleMvielister {
private MyvieFi nder novi eFi nder;
@Requi red

public void setMyvi eFi nder (Myvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;
}

...

This annotation simply indicates that the affected bean property must be populated at configuration time: either
through an explicit property value in a bean definition or through autowiring. The container will throw an
exception if the affected bean property has not been populated; this allows for eager and explicit failure,
avoiding Nul | Poi nt er Except i ons or the like later on. Note that it is still recommended to put assertions into
the bean class itself (for example into an init method) in order to enforce those required references and values
even when using the class outside of a container.

3.11.2. @ut owi r ed

As expected, the @wut owi r ed annotation may be applied to "traditional" setter methods:

public class SinpleMyvielLister {
private Movi eFi nder novi eFi nder;
@\ut owi r ed

public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;
}

...

The annotation may also be applied to methods with arbitrary names and/or multiple arguments:

public class Myvi eRecommender {
private Movi eCatal og novi eCat al og;

private CustonerPreferencebDao custoner Pref erenceDao;

Spring Framework (2.5.6) 93

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/annotation/CommonAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/orm/jpa/support/PersistenceAnnotationBeanPostProcessor.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/annotation/RequiredAnnotationBeanPostProcessor.html

The 1oC container

©@Aut owi red
public void prepare(MvieCatal og novi eCat al og, Custoner Pref erenceDao cust oner Pref er enceDao) {

t hi s. novi eCat al og = novi eCat al og;
t hi s. cust omer Pref erenceDao = cust oner Pr ef er enceDao;

/1

The @ut owi r ed annotation may even be applied on constructors and fields:

public class Myvi eRecommender {

@\ut owi r ed
private MovieCatal og novi eCat al og;

private CustonerPreferenceDao customer Pref erencebDao;
@\ut owi r ed

publ i ¢ Movi eRecormender (Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {
t hi s. cust oner Pref erenceDao = cust oner Pr ef er enceDao;

}
/1

It is also possible to provide all beans of a particular type from the ApplicationContext by adding the
annotation to afield or method that expects an array of that type:
public class Myvi eRecommender {

@\ut owi r ed
private MvieCatal og[] novi eCat al ogs;

Il

The same applies for typed collections:

public class Myvi eRecommender {
private Set <Movi eCat al og> novi eCat al ogs;

@\ut owi r ed
public void setMvieCat al ogs(Set <Movi eCat al og> novi eCat al ogs) {
thi s. movi eCat al ogs = novi eCat al ogs;

}
Il

Even typed Maps may be autowired as long as the expected key typeis st ri ng. The Map values will contain all
beans of the expected type, and the keys will contain the corresponding bean names:

public class Myvi eRecommender {
private Map<String, MoyvieCatal og> novi eCat al ogs;
@\ut owi r ed

public void setMyvieCatal ogs(Map<Stri ng, MovieCatal og> novi eCat al ogs) {
t hi s. novi eCat al ogs = novi eCat al ogs;

}
11

Spring Framework (2.5.6) 94

The 1oC container

By default, the autowiring will fail whenever zero candidate beans are available; the default behavior isto treat
annotated methods, constructors, and fields as indicating required dependencies. This behavior can be changed
as demonstrated below.

public class SinpleMyvielLister {
private Movi eFi nder novi eFi nder;

©@Aut owi red(requi red=fal se)
public void setMvi eFi nder (Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;

}
...

Note

Only one annotated constructor per-class may be marked as required, but multiple non-required
constructors can be annotated. In that case, each will be considered among the candidates and
Spring will use the greediest constructor whose dependencies can be satisfied.

Prefer the use of @ut owi red's required attribute over the @requi red annotation. The required
attribute indicates that the property is not required for autowiring purposes, simply skipping it if it
cannot be autowired. @equi r ed, on the other hand, is stronger in that it enforces the property to
have been set in any of the container's supported ways; if no value has been injected, a
corresponding exception will be raised.

@utowi red may aso be used for well-known "resolvable dependencies': the BeanFactory interface, the
Appl i cati onCont ext interface, the Resour ceLoader interface, the Appl i cati onEvent Publ i sher interface and
the MessageSource interface. These interfaces (and their extended interfaces such as
Conf i gur abl eAppl i cati onCont ext OF ResourcePatternResol ver) Will be automatically resolved, with no
special setup necessary.

public class Myvi eRecommender {

@\ut owi r ed
private ApplicationContext context;

publ i c Movi eRecommender () {
}

...

3.11.3. Fine-tuning annotation-based autowiring with qualifiers

Since autowiring by type may lead to multiple candidates, it is often necessary to have more control over the
selection process. One way to accomplish this is with Spring's @ualifier annotation. This allows for
associating qualifier values with specific arguments, narrowing the set of type matches so that a specific bean is
chosen for each argument. In the simplest case, this can be a plain descriptive value:
public class Myvi eRecommender {

@A\ut owi r ed

@ualifier("min")

private MyvieCatal og novi eCat al og;

...

Spring Framework (2.5.6) 95

The 1oC container

The @ual i fi er annotation can also be specified on individual constructor arguments or method parameters.

public class Myvi eRecommender {
private MovieCatal og novi eCat al og;
private CustomnerPreferenceDao customner Pref erenceDao;

©@Aut owi r ed

public void prepare(@ualifier("min") MpvieCatal og novi eCat al og, Custoner PreferenceDao cust omer Pref erenceDe

t hi s. novi eCat al og = novi eCat al og;
t hi s. cust oner Pref erenceDao = cust oner Pr ef er enceDao;

The corresponding bean definitions would look like as follows. The bean with qualifier value "main" would be
wired with the constructor argument that has been qualified with the same value.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranmework. or g/ schema/ cont ext "
xsi : schemalLocat i on="

http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- beans- 2. &
ht t p: // ww. spri ngfranmewor k. or g/ schenma/ cont ext http://ww. springfranework. or g/ schema/ cont ext/ spri ng-cont e

<cont ext: annot ati on-confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qualifier value="main"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<qual i fier value="action"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean i d="novi eRecommender" cl ass="exanpl e. Movi eRecommender "/ >

</ beans>

For afallback match, the bean name is considered as a default qualifier value. This means that the bean may be
defined with an id "main" instead of the nested qualifier element, leading to the same matching result.
However, note that while this can be used to refer to specific beans by name, @ut owi red is fundamentally
about type-driven injection with optional semantic qualifiers. This means that qualifier values, even when using
the bean name fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values would be "main" or "EMEA" or
"persistent”, expressing characteristics of a specific component - independent from the bean id (which may be
auto-generated in case of an anonymous bean definition like the one above).

Qualifiers also apply to typed collections (as discussed above): e.g. to Set <Movi eCat al og>. In such a case, all
matching beans according to the declared qualifiers are going to be injected as a collection. This implies that
qualifiers do not have to be unique; they rather simply constitute filtering criteria. For example, there could be
multiple Movi eCat al og beans defined with the same qualifier value "action™; all of which would be injected
into a Set <Mbvi eCat al og> annotated with @ual i fi er ("action").

Tip

-

e

If you intend to express annotation-driven injection by name, do not primarily use @ut owired -
even if is technically capable of referring to a bean name through @ualifier values. Instead,
prefer the JSR-250 @resour ce annotation which is semantically defined to identify a specific target

Spring Framework (2.5.6) 96

The 1oC container

component by its unique name, with the declared type being irrelevant for the matching process.

As a specific consequence of this semantic difference, beans which are themselves defined as a
collection or map type cannot be injected via @ut owi red since type matching is not properly
applicable to them. Use @esour ce for such beans, referring to the specific collection/map bean by
unique name.

Note: In contrast to @ut owi red which is applicable to fields, constructors and multi-argument
methods (allowing for narrowing through qualifier annotations at the parameter level), @esour ce
is only supported for fields and bean property setter methods with a single argument. As a
consequence, stick with qualifiers if your injection target is a constructor or a multi-argument
method.

You may create your own custom qualifier annotations as well. Simply define an annotation and provide the
@ual i fi er annotation within your definition:

@ar get ({ El enent Type. FI ELD, El enent Type. PARAMETER})
@Ret ent i on(Ret enti onPol i cy. RUNTI ME)

@ualifier

public @nterface Genre {

String val ue();

Then you can provide the custom qualifier on autowired fields and parameters:

public class Myvi eRecommender {

@\ut owi red
@zenre("Action")
private MyvieCatal og actionCatal og;

private MvieCatal og conedyCat al og;

@\ut owi r ed

public void set ConedyCat al og(@zenr e(" Conedy") Movi eCat al og conedyCat al og) {
t hi s. conedyCat al og = conedycCat al og;

}

/1

The next step is to provide the information on the candidate bean definitions. You can add <qual i fi er/ > tags
as sub-elements of the <bean/ > tag and then specify the ' type' and ' val ue' to match your custom qualifier
annotations. The type will be matched against the fully-qualified class name of the annotation, or as a
convenience when there is no risk of conflicting names, you may use the 'short' class name. Both are
demonstrated in the following example.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranmework. or g/ schema/ cont ext "
xsi : schemaLocati on="
http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans- 2. &
http://ww. springframework. or g/ schenma/ cont ext http://ww. springframework. or g/ schena/ cont ext/ spri ng-conte

<cont ext : annot ati on- confi g/ >
<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qualifier type="Genre" val ue="Action"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

Spring Framework (2.5.6) 97

The 1oC container

<qualifier type="exanple.Genre" val ue="Conedy"/>
<I-- inject any dependencies required by this bean -->
</ bean>

<bean i d="novi eRecommender"” cl ass="exanpl e. Movi eRecommender "/ >

</ beans>

In the next section, entitled Section 3.12, “Classpath scanning for managed components’, you will see an
annotation-based alternative to providing the qualifier metadata in XML. Specificaly, see: Section 3.12.6,
“Providing qualifier metadata with annotations’.

In some cases, it may be sufficient to use an annotation without a value. This may be useful when the
annotation serves a more generic purpose and could be applied across several different types of dependencies.
For example, you may provide an offline catalog that would be searched when no Internet connection is
available. First define the simple annotation:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret enti onPol i cy. RUNTI ME)

@ualifier
public @nterface O fline {

}

Then add the annotation to the field or property to be autowired:

public class Myvi eRecommender {
@\ut owi r ed
@fline
private MovieCatal og of flineCat al og;

...

Now the bean definition only needs a qualifier ' t ype' :

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qualifier type="Ofline"/>

<l-- inject any dependencies required by this bean -->
</ bean>

It is also possible to define custom qualifier annotations that accept named attributes in addition to or instead of
the simple ' val ue' attribute. If multiple attribute values are then specified on a field or parameter to be
autowired, a bean definition must match all such attribute values to be considered an autowire candidate. As an
example, consider the following annotation definition:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret enti onPol i cy. RUNTI MVE)

@ualifier
public @nterface MyvieQualifier {
String genre();

Format format();

In this case For nat IS an enum:

publ i c enum Format {

VHS, DVD, BLURAY

Spring Framework (2.5.6) 98

The 1oC container

The fields to be autowired are annotated with the custom qualifier and include values for both attributes:
"genre' and' format" .

public class Myvi eRecommender {

@\ut owi red
@pbvi eQual i fier(format=Format.VHS, genre="Action")
private MoyvieCatal og acti onVhsCat al og;

@\ut owi r ed
@bvi eQual i fier(format=Format.VHS, genre="Conedy")
private MovieCatal og conedyVhsCat al og;

@\ut owi r ed
@wvi eQual i fier(format=Format. DVD, genre="Action")
private Movi eCatal og acti onDvdCat al og;

@\ut owi r ed
@bvi eQual i fier(format=For mat . BLURAY, genre="Conedy")
private MovieCatal og conedyBl uRayCat al og;

Il

Finally, the bean definitions should contain matching qualifier values. This example also demonstrates that
bean meta attributes may be used instead of the <qualifier/> sub-elements. If available, the <qualifier/>
and its attributes would take precedence, but the autowiring mechanism will fallback on the values provided
within the <net a/ > tagsif no such qualifier is present (see the last 2 bean definitions below).

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. springfranmework. or g/ schema/ cont ext "
xsi : schemaLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans- 2. &
http://ww. springframework. or g/ schena/ cont ext http://ww. springframework. or g/ schena/ cont ext/ spri ng-conte

<cont ext: annot ati on-confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qualifier type="MyvieQualifier">
<attribute key="format" val ue="VHS"/>
<attribute key="genre" val ue="Action"/>
</qualifier>
<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0g" >
<qualifier type="MyvieQualifier">
<attribute key="format" val ue="VHS"/>
<attribute key="genre" val ue="Conedy"/>
</qualifier>
<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<meta key="format" val ue="DVD'/ >

<meta key="genre" val ue="Action"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<meta key="format" val ue="BLURAY"/>

<nmeta key="genre" val ue="Conedy"/>

<I-- inject any dependencies required by this bean -->
</ bean>

</ beans>

3.11.4. cust omAut owi r eConf i gur er

Spring Framework (2.5.6) 99

The 1oC container

The Cust omAut owi reConfi gurer iS @ BeanFact or yPost Processor that enables further customization of the
autowiring process. Specifically, it allows you to register your own custom qualifier annotation types even if
they are not themselves annotated with Spring's @ual i fi er annotation.

<bean i d="cust omAut owi reConfi gurer" class="org. spri ngfranework. beans. factory. annot ati on. Cust omAut owi r eConfi gurer
<property name="customQualifierTypes">
<set >
<val ue>exanpl e. Cust omQual i fi er </ val ue>
</ set >
</ property>
</ bean>

Note that the particular implementation of Autowi reCandi dat eResol ver that will be activated for the
application context depends upon the Java version. If running on less than Java 5, the qualifier annotations are
not supported, and therefore autowire candidates are solely determined by the ' aut owi r e- candi dat e' value of
each bean definition as well as any * def aul t - aut owi r e- candi dat es' pattern(s) available on the <beans/ >
element. If running on Java 5 or greater, the presence of @ualifier annotations or any custom annotations
registered with the cust omAut owi reConf i gur er will aso play arole.

Regardless of the Java version, the determination of a "primary" candidate (when multiple beans qualify as
autowire candidates) is the same: if exactly one bean definition among the candidates hasa' pri mary' attribute
setto' true', it will be selected.

3.11.5. @esource

Spring also supports injection using the JSR-250 @esource annotation on fields or bean property setter
methods. Thisis a common pattern found in Java EE 5 and Java 6 (e.g. in JSF 1.2 managed beans or JAX-WS
2.0 endpoints), which Spring supports for Spring-managed objects as well.

@resour ce takes a 'name' attribute, and by default Spring will interpret that value as the bean name to be
injected. In other words, it follows by-name semantics as demonstrated in this example:

public class SinpleMyvielLister {
private Movi eFi nder novi eFi nder;

@Resour ce(nane="nyMvi eFi nder")
public void set Movi eFi nder (Movi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;

}

If no name is specified explicitly, then the default name will be derived from the name of the field or setter
method: In case of afield, it will simply be equivalent to the field name; in case of a setter method, it will be
equivalent to the bean property name. So the following example is going to have the bean with name
"movieFinder" injected into its setter method:

public class SinpleMvieLister {

private MyvieFi nder novi eFi nder;

@Resour ce

public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;

}

Spring Framework (2.5.6) 100

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/annotation/CustomAutowireConfigurer.html

The 1oC container

Note

The name provided with the annotation will be resolved as a bean name by the BeanFact ory of
which the ConmonAnnot at i onBeanPost Processor is aware. Note that the names may be resolved
viaJNDI if Spring's Si npl eJndi BeanFact ory is configured explicitly. However, it is recommended
to rely on the default behavior and simply use Spring's JNDI lookup capabilities to preserve the
level of indirection.

Similar to @ut owi r ed, @esour ce may fall back to standard bean type matches (i.e. find a primary type match
instead of a specific named bean) as well as resolve well-known "resolvable dependencies': the BeanFact ory
interface, the Appl i cati onCont ext interface, the Resour ceLoader interface, the Appl i cati onEvent Publ i sher
interface and the MessageSour ce interface. Note that this only applies to @esour ce usage with no explicit
name specified!

So the following example will have its custonerPreferencebDao field looking for a bean with name
"customerPreferenceDao" first, then falling back to a primary type match for the type Cust oner Pr ef er enceDao.
The "context" field will simply be injected based on the known resolvable dependency type
Appl i cati onCont ext .

public class Myvi eRecommender {

@Resour ce
private CustomnerPreferenceDao customner Pref erenceDao;

@Resour ce

private ApplicationContext context;

publ i c Movi eRecommender () {
}

...

3.11.6. @ost Construct and @r eDest r oy

The ConmonAnnot at i onBeanPost Processor ot only recoghizes the @esour ce annotation but also the JSR-250
lifecycle annotations. Introduced in Spring 2.5, the support for these annotations offers yet another alternative to
those described in the sections on initialization callbacks and destruction callbacks. Provided that the
CormmonAnnot at i onBeanPost Pr ocessor IS registered within the Spring Appl i cat i onCont ext , a method carrying
one of these annotations will be invoked at the same point in the lifecycle as the corresponding Spring lifecycle
interface's method or explicitly declared callback method. In the example below, the cache will be
pre-populated upon initialization and cleared upon destruction.

public cl ass Cachi ngMovi eLi ster {

@Post Const ruct
public void popul at eMovi eCache() {
/] popul ates the novie cache upon initialization...

}
@°r eDestr oy

public void cl ear Mvi eCache() {
/'l clears the novie cache upon destruction...
}

Note

Spring Framework (2.5.6) 101

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jndi/support/SimpleJndiBeanFactory.html

The 1oC container

For details regarding the effects of combining various lifecycle mechanisms, see Section 3.5.1.4,
“Combining lifecycle mechanisms’.

3.12. Classpath scanning for managed components

Thus far most of the examples within this chapter have used XML for specifying the configuration metadata
that produces each BeanDefinition within the Spring container. The previous section (Section 3.11,
“Annotation-based configuration”) demonstrated the possibility of providing a considerable amount of the
configuration metadata using source-level annotations. Even in those examples however, the "base" bean
definitions were explicitly defined in the XML file while the annotations were driving the dependency injection
only. The current section introduces an option for implicitly detecting the candidate components by scanning
the classpath and matching against filters.

3.12.1. @onponent and further stereotype annotations

Beginning with Spring 2.0, the @reposi t ory annotation was introduced as a marker for any class that fulfills
the role or stereotype of a repository (ak.a. Data Access Object or DAO). Among the possibilities for
leveraging such a marker is the automatic trandation of exceptions as described in Section 12.6.4, “Exception
Trandlation”.

Spring 2.5 introduces further stereotype annotations. @onponent, @ervi ce and @ontrol | er. @onponent
serves as a generic stereotype for any Spring-managed component; whereas, @repository, @ervice, and
@ontrol l er serve as speciaizations of @onponent for more specific use cases (e.g., in the persistence,
service, and presentation layers, respectively). What this means is that you can annotate your component
classes with @onponent, but by annotating them with @reposi t ory, @ervi ce, Or @ontrol | er instead, your
classes are more properly suited for processing by tools or associating with aspects. For example, these
stereotype annotations make ideal targets for pointcuts. Of course, it is also possible that @repository,
@er vi ce, and @ontrol | er may carry additional semantics in future releases of the Spring Framework. Thus,
if you are making a decision between using @onponent or @er vi ce for your service layer, @er vi ce isclearly
the better choice. Similarly, as stated above, @repository is aready supported as a marker for automatic
exception translation in your persistence layer.

3.12.2. Auto-detecting components

Spring provides the capability of automatically detecting 'stereotyped’ classes and registering corresponding
BeanDef i ni ti ons with the Appl i cati onCont ext . For example, the following two classes are eligible for such
autodetection:

@ervi ce
public class SinpleMyvielLister {

private MyvieFi nder novi eFi nder;

@\ut owi red
public Sinpl eMovi eLi st er (Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder;

}

@Reposi tory

public class JpaMyvi eFi nder inplenments MyvieFi nder {
/1 inplementation elided for clarity

}

Spring Framework (2.5.6) 102

The 1oC container

To autodetect these classes and register the corresponding beans requires the inclusion of the following element
in XML where 'basePackage’ would be a common parent package for the two classes (or aternatively a
commarseparated list could be specified that included the parent package of each class).

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranmework. or g/ schema/ cont ext "
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http: // ww. spri ngfranewor k. or g/ schenma/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng-cont ext - 2. 5. xsd" >

<cont ext : conponent - scan base- package="or g. exanpl e"/ >

</ beans>

Note

Note that the scanning of classpath packages requires the presence of corresponding directory
entries in the classpath. When building jars with Ant, make sure to not activate the files-only
switch of the jar task!

Furthermore, the Aut ow r edAnnot at i onBeanPost Processor and CommonAnnot at i onBeanPost Processor are
both included implicitly when using the component-scan element. That means that the two components are
autodetected and wired together - al without any bean configuration metadata provided in XML.

Note

"9
The registration of those post-processors can be disabled by including the annotation-config
attribute with avalue of ‘false'.

3.12.3. Using filters to customize scanning

By default, classes annotated with @onponent , @eposi tory, @ervi ce, Or @ontrol | er (or classes annotated
with a custom annotation that itself is annotated with @onponent) are the only detected candidate components.
However it is simple to modify and extend this behavior by applying custom filters. These can be added as
either include-filter or exclude-filter sub-elements of the ‘conponent - scan' element. Each filter element requires
the 't ype' and 'expr essi on' attributes. Five filtering options exist as described below.

Table 3.7. Filter Types

Filter Type Example Expression Description

annotation | or g. exanpl e. SomeAnnot at i on An annotation to be present at the type level in target
components.

assignable | org. exanpl e. Soned ass A class (or interface) that the target components are

assignable to (extend/implement).

aspect] org. exanpl e. . *Servi ce+ An Aspect type expression to be matched by the
target components.

regex org\.exanpl e\. Defaul t.* A regex expression to be matched by the target
components class names.

Spring Framework (2.5.6) 103

The 1oC container

Filter Type Example Expression Description

custom org. exanpl e. MyCust onTypeFi | t er A custom implementation of the
org. springframework. core. type. TypeFilter
interface.

Find below an example of the XML configuration for ignoring all @epository annotations and using "stub"
repositories instead.

<beans ...>

<cont ext : conponent - scan base- package="or g. exanpl e" >

<context:include-filter type="regex" expression=".*Stub.*Repository"/>

<cont ext: excl ude-filter type="annotation" expression="org.springfranmework. stereotype. Repository"/>
</ cont ext : conponent - scan>

</ beans>

Note

It is aso possible to disable the default filters by providing use-default-filters="false" as an
attribute of the <component-scan/> element. This will in effect disable automatic detection of

classes annotated with @onponent , @Reposi t ory, @er vi ce, Or @ontrol | er.

3.12.4. Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name will be generated by the
BeanNaneGener at or Strategy known to that scanner. By default, any Spring 'stereotype’ annotation
(@onponent , @Reposi tory, @ervi ce, and @ontrol | er) that contains a nane value will thereby provide that
name to the corresponding bean definition. If such an annotation contains no nane value or for any other
detected component (such as those discovered due to custom filters), the default bean name generator will
return the uncapitalized non-qualified class name. For example, if the following two components were detected,
the names would be 'myMovieLister' and 'movieFinderimpl':

@ser vi ce("myMvi eLi ster")
public class SinpleMyvielLister {
...

}

@Repository
public class MovieFinderlnpl inplenments MvieFi nder {

...
}

Note
e
If you don't want to rely on the default bean-naming strategy, you may provide a custom
bean-naming strategy. First, implement the BeanNaneGener at or_interface, and be sure to include a
default no-arg constructor. Then, provide the fully-qualified class name when configuring the
scanner:
<beans ...>

<cont ext : conponent - scan base- package="or g. exanpl e"
nane- gener at or =" or g. exanpl e. MyNaneGenerator" />

Spring Framework (2.5.6) 104

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/support/BeanNameGenerator.html

The 1oC container

</ beans>

As a genera rule, consider specifying the name with the annotation whenever other components may be
making explicit references to it. On the other hand, the auto-generated names are adeguate whenever the
container is responsible for wiring.

3.12.5. Providing a scope for autodetected components

As with Spring-managed components in general, the default and by far most common scope is 'singleton'.
However, there are times when other scopes are needed. Therefore Spring 2.5 introduces a new @cope
annotation aswell. Simply provide the name of the scope within the annotation, such as:

@bcope(" prot ot ype")

@Repository

public class MyvieFinderlnpl inplements MyvieFinder {
...

}

Note
e
If you would like to provide a custom strategy for scope resolution rather than relying on the
annotation-based approach, implement the ScopeMet adat aResol ver interface, and be sure to
include a default no-arg constructor. Then, provide the fully-qualified class name when configuring
the scanner:
<beans ...>

<cont ext : conponent - scan base- package="or g. exanpl e"
scope-resol ver ="or g. exanpl e. MyScopeResol ver" />

</ beans>

When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped objects. The
reasoning is described in detail within the section entitled Section 3.4.4.5, “ Scoped beans as dependencies’. For
this purpose, a scoped-proxy attribute is available on the ‘component-scan’ element. The three possible values
are: 'no', 'interfaces, and 'targetClass. For example, the following configuration will result in standard JDK
dynamic proxies:

<beans ...>

<cont ext : conponent - scan base- package="or g. exanpl e"
scoped- proxy="interfaces" />

</ beans>

3.12.6. Providing qualifier metadata with annotations

The @walifier annotation was introduced in the section above entitled Section 3.11.3, “Fine-tuning
annotation-based autowiring with qualifiers’. The examplesin that section demonstrated use of the @ual i fi er
annotation as well as custom qualifier annotations to provide fine-grained control when resolving autowire
candidates. Since those examples were based on XML bean definitions, the qualifier metadata was provided on
the candidate bean definitions using the 'qual i fi er' or 'met a' sub-elements of the 'bean' element in the XML.
When relying upon classpath scanning for autodetection of components, then the qualifier metadata may be

Spring Framework (2.5.6) 105

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/annotation/ScopeMetadataResolver.html

The 1oC container

provided with type-level annotations on the candidate class. The following three examples demonstrate this
technique.

@Conponent

@ualifier("Action")

public class ActionMyvieCatal og i npl ements Myvi eCat al og {
...

}

@Conponent

@enre("Action")

public class ActionMyvieCatalog inplenments MyvieCatal og {
...

}

@Conponent

@fline

public class Cachi ngMvi eCat al og i npl ements Movi eCat al og {
...

}

Note

e As with most of the annotation-based alternatives, keep in mind that the annotation metadata is
bound to the class definition itself, while the use of XML allows for multiple beans of the same
type to provide variations in their qualifier metadata since that metadata is provided per-instance
rather than per-class.

3.13. Registering a LoadTi neWeaver

The cont ext namespace introduced in Spring 2.5 provides al oad- t i me- weaver element.

<beans ...>
<cont ext: | oad-ti ne-weaver/ >

</ beans>

Adding this element to an XML-based Spring configuration file activates a Spring LoadTi meweaver for the
Appl i cationContext. Any bean within that ApplicationContext may implement LoadTi mneWeaver Anar e
thereby receiving a reference to the load-time weaver instance. This is particularly useful in combination with
Spring's JPA support where load-time weaving may be necessary for JPA class transformation. Consult the
Local Cont ai ner Ent i t yManager Fact or yBean Javadoc for more detail. For more on AspectJ |oad-time weaving,
see Section 6.8.4, “Load-time weaving with AspectJ in the Spring Framework”.

Spring Framework (2.5.6) 106

Chapter 4. Resources

4.1. Introduction

Javas standard j ava. net . URL class and standard handlers for various URL prefixes unfortunately are not quite
adequate enough for al access to low-level resources. For example, there is no standardized URL
implementation that may be used to access a resource that needs to be obtained from the classpath, or relative to
aservl et Cont ext . Whileit is possible to register new handlers for specialized URL prefixes (similar to existing
handlers for prefixes such as htt p:), thisis generally quite complicated, and the URL interface till lacks some
desirable functionality, such as a method to check for the existence of the resource being pointed to.

4.2. The Resour ce interface

Spring's Resour ce interface is meant to be a more capable interface for abstracting access to low-level
resources.
public interface Resource extends |nputStreanSource {
bool ean exists();
bool ean i sOpen();
URL get URL() throws | OException;
File getFile() throws | CExcepti on;
Resource createRel ative(String relativePath) throws | OException;
String getFilenane();

String getDescription();

public interface |nputStreanSource {

I nput St ream get | nput Strean{) throws | OException;

Some of the most important methods from the Resour ce interface are:

e get |l nput Strean() : locates and opens the resource, returning an | nput St reamfor reading from the resource.
It is expected that each invocation returns a fresh | nput St ream It is the responsibility of the caller to close
the stream.

e exists(): returnsabool ean indicating whether this resource actually existsin physical form.

e isQpen(): returns a bool ean indicating whether this resource represents a handle with an open stream. If
true, the I nput St ream cannot be read multiple times, and must be read once only and then closed to avoid
resource leaks. Will be false for al usual resource implementations, with the exception of
| nput St r eanResour ce.

e get Description(): returns adescription for this resource, to be used for error output when working with the
resource. Thisis often the fully qualified file name or the actual URL of the resource.

Other methods allow you to obtain an actual URL or Fil e object representing the resource (if the underlying

Spring Framework (2.5.6) 107

Resources

implementation is compatible, and supports that functionality).

The Resour ce abstraction is used extensively in Spring itself, as an argument type in many method signatures
when a resource is needed. Other methods in some Spring APIs (such as the constructors to various
Appl i cati onCont ext implementations), take a st ri ng which in unadorned or simple form is used to create a
Resour ce appropriate to that context implementation, or via special prefixes on the string path, adlow the
caller to specify that a specific Resour ce implementation must be created and used.

While the Resour ce interface is used a lot with Spring and by Spring, it's actually very useful to use as a
genera utility class by itself in your own code, for access to resources, even when your code doesn't know or
care about any other parts of Spring. While this couples your code to Spring, it really only couples it to this
small set of utility classes, which are serving as a more capable replacement for URL, and can be considered
equivalent to any other library you would use for this purpose.

It is important to note that the Resour ce abstraction does not replace functionality: it wraps it where possible.
For example, aur | Resour ce Wraps a URL, and uses the wrapped URL to do its work.

4.3. Built-in Resour ce implementations

There are anumber of Resour ce implementations that come supplied straight out of the box in Spring:

4.3.1. Ur|l Resource

The ur | Resour ce wrapsaj ava. net . URL, and may be used to access any object that is normally accessible viaa
URL, such asfiles, an HTTP target, an FTP target, etc. All URLs have a standardized st ri ng representation,
such that appropriate standardized prefixes are used to indicate one URL type from another. This includes
file: for accessing filesystem paths, htt p: for accessing resources viathe HTTP protocol, ft p: for accessing
resources via FTP, etc.

A Url Resour ce is created by Java code explicitly using the ur | Resour ce constructor, but will often be created
implicitly when you call an APl method which takes a st ri ng argument which is meant to represent a path. For
the latter case, a JavaBeans Propert yEdi t or Will ultimately decide which type of Resource to create. If the
path string contains a few well-known (to it, that is) prefixes such as cl asspat h: , it will create an appropriate
specialized Resour ce for that prefix. However, if it doesn't recognize the prefix, it will assume the thisisjust a
standard URL string, and will create a Ur | Resour ce.

4.3.2. d assPat hResour ce

This class represents a resource which should be obtained from the classpath. This uses either the thread
context class loader, a given class loader, or agiven class for loading resources.

This Resour ce implementation supports resolution asj ava. i o. Fi | e if the class path resource resides in the file
system, but not for classpath resources which reside in ajar and have not been expanded (by the servlet engine,
or whatever the environment is) to the filesystem. To address this the various Resour ce implementations
always support resolution asaj ava. net . URL.

A d assPat hResour ce is created by Java code explicitly using the d assPat hResour ce constructor, but will
often be created implicitly when you call an APl method which takes a st ri ng argument which is meant to
represent a path. For the latter case, a JavaBeans PropertyEditor will recognize the special prefix
cl asspat h: on the string path, and create a d assPat hResour ce in that case.

Spring Framework (2.5.6) 108

Resources

4.3.3. Fi | eSyst enmResour ce

Thisis a Resour ce implementation for j ava. i o. Fi | e handles. It obviously supports resolution as aFi | e, and
asaURL.

4.3.4. Servl et Cont ext Resour ce

This is a Resource implementation for Servl et Cont ext resources, interpreting relative paths within the
relevant web application's root directory.

This always supports stream access and URL access, but only alows java.io. Fil e access when the web
application archive is expanded and the resource is physically on the filesystem. Whether or not it's expanded
and on the filesystem like this, or accessed directly from the JAR or somewhere else like a DB (it's
conceivable) is actually dependent on the Servlet container.

4.3.5. | nput St r eanResour ce

A Resource implementation for a given I nput Stream This should only be used if no specific Resource
implementation is applicable. In particular, prefer Byt eArrayResource or any of the file-based Resource
implementations where possible.

In contrast to other Resour ce implementations, this is a descriptor for an already opened resource - therefore
returning t rue from i sgpen() . Do not use it if you need to keep the resource descriptor somewhere, or if you
need to read a stream multiple times.

4.3.6. Byt eArr ayResour ce

This is a Resour ce implementation for a given byte array. It creates a Byt eArrayl nput St ream for the given
byte array.

It's useful for loading content from any given byte array, without having to resort to a single-use
I nput St r eanResour ce.

4.4. The Resour ceLoader

The Resour ceLoader interface is meant to be implemented by objects that can return (i.e. load) Resource
instances.

public interface ResourcelLoader {
Resource get Resource(String | ocation);
}

All application contexts implement the Resour ceLoader interface, and therefore all application contexts may be
used to obtain Resour ce instances.

When you call get Resour ce() on a specific application context, and the location path specified doesn't have a
specific prefix, you will get back a Resour ce type that is appropriate to that particular application context. For
example, assume the following snippet of code was executed against a d assPat hXni Appl i cati onCont ext

instance:

Resource tenpl ate = ctx. get Resource("sone/resource/ path/ nyTenpl ate. txt);

Spring Framework (2.5.6) 109

Resources

What would be returned would be a d assPat hResource; if the same method was executed against a
Fi | eSystenXni Appl i cationContext instance, youd get back a FileSystenResource. For a
WebAppl i cat i onCont ext , you'd get back a Ser vi et Cont ext Resour ce, and SO On.

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force d assPat hResour ce to be used, regardless of the application context
type, by specifying the specia cl asspat h: prefix:

Resource tenpl ate = ctx. get Resource("cl asspat h: sone/ r esour ce/ pat h/ nyTenpl ate. t xt);

Similarly, one can force aur | Resour ce to be used by specifying any of the standard j ava. net . URL prefixes:

Resource tenplate = ctx.getResource("file:/sone/resource/path/ nyTenpl ate. txt);

Resource tenpl ate = ctx. get Resource("http://nyhost.coniresource/path/nyTenpl ate. txt);

The following table summarizes the strategy for converting St ri ngSto Resour ceS:

Table4.1. Resour ce strings

Prefix Example Explanation
classpath: cl asspat h: coni nyapp/ confi g. xm Loaded from the classpath.
file: file:/datal/config.xm Loaded as a URL, from the
filesystem. 2
http: http:// nyserver/| ogo. png Loaded asa URL.
(none) / dat a/ confi g. xn Depends on the underlying

Appl i cati onCont ext .

8But see also the section entitled Section 4.7.3, “Fi | eSyst enResour ce caveats’.

4.5. The Resour ceLoader Awnar e interface

The Resour ceLoader Avar e interface is a special marker interface, identifying objects that expect to be provided
with aResour ceLoader reference.

public interface ResourcelLoader Anare {

voi d set Resour celLoader (Resour ceLoader resourcelLoader);

}

When a class implements ResourcelLoader Aware and is deployed into an application context (as a
Spring-managed bean), it is recognized as Resour celLoader Awnar e by the application context. The application
context will then invoke the set ResourcelLoader (Resour ceLoader), supplying itself as the argument
(remember, all application contextsin Spring implement the Resour ceLoader interface).

Spring Framework (2.5.6) 110

Resources

Of course, since an ApplicationContext IS a ResourcelLoader, the bean could aso implement the
Appl i cat i onCont ext Awar e interface and use the supplied application context directly to load resources, but in
generd, it's better to use the specialized Resour ceLoader interface if that's all that's needed. The code would
just be coupled to the resource loading interface, which can be considered a utility interface, and not the whole
Spring Appl i cati onCont ext interface.

As of Spring 2.5, you can rely upon autowiring of the Resour ceLoader as an aternative to implementing the
Resour ceLoader Awar e interface. The "traditional” const ruct or and by Type autowiring modes (as described in
the section entitled Section 3.3.5, “Autowiring collaborators’) are now capable of providing a dependency of
type Resour ceLoader for either a constructor argument or setter method parameter respectively. For more
flexibility (including the ability to autowire fields and multiple parameter methods), consider using the new
annotation-based autowiring features. In that case, the ResourceLoader will be autowired into a field,
constructor argument, or method parameter that is expecting the Resour ceLoader type as long as the field,
constructor, or method in question carries the @ut owi red annotation. For more information, see the section
entitled Section 3.11.2, “ @ut owi r ed”.

4.6. Resour ces as dependencies

If the bean itself is going to determine and supply the resource path through some sort of dynamic process, it
probably makes sense for the bean to use the Resour ceLoader interface to load resources. Consider as an
example the loading of atemplate of some sort, where the specific resource that is needed depends on the role
of the user. If the resources are static, it makes sense to eliminate the use of the Resour ceLoader interface
completely, and just have the bean expose the Resource properties it needs, and expect that they will be
injected into it.

What makes it trivial to then inject these properties, is that all application contexts register and use a special
JavaBeans Pr oper t yEdi t or Which can convert Stri ng paths to Resour ce objects. So if nyBean has a template
property of type Resour ce, it can be configured with a simple string for that resource, as follows:

<bean i d="nyBean" class="...">
<property nanme="tenpl ate" val ue="sone/resource/ path/ nyTenpl ate. txt"/>
</ bean>

Note that the resource path has no prefix, so because the application context itself is going to be used as the
Resour ceLoader, the resource itself will be loaded via a d assPat hResource, Fil eSystenResource, Of
Ser vl et Cont ext Resour ce (as appropriate) depending on the exact type of the context.

If there is a need to force a specific Resour ce type to be used, then a prefix may be used. The following two
examples show how to force a d assPat hResource and a Url Resource (the latter being used to access a
filesystemfile).

<property nanme="tenpl ate" val ue="cl asspat h: sone/ resour ce/ pat h/ nyTenpl ate. t xt">

<property name="tenpl ate" val ue="file:/some/resource/ path/ myTenpl ate.txt"/>

4.7. Application contexts and Resour ce paths

4.7.1. Constructing application contexts

Spring Framework (2.5.6) 111

Resources

An application context constructor (for a specific application context type) generally takes a string or array of
strings as the location path(s) of the resource(s) such as XML files that make up the definition of the context.

When such a location path doesn't have a prefix, the specific Resour ce type built from that path and used to
load the bean definitions, depends on and is appropriate to the specific application context. For example, if you
create ad assPat hxm Appl i cat i onCont ext asfollows:

Appl i cationContext ctx = new C assPat hXnl Appli cati onCont ext ("conf/appContext.xm ");

The bean definitions will be loaded from the classpath, as a a assPat hResour ce will be used. But if you create
aFi | eSyst enXm Appl i cati onCont ext asfollows:

ApplicationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext (" conf/appCont ext.xm ") ;

The bean definition will be loaded from a filesystem location, in this case relative to the current working
directory.

Note that the use of the special classpath prefix or a standard URL prefix on the location path will override the
default type of Resour ce created to load the definition. So thisFi | eSyst emXml Appl i cat i onCont ext ...

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext ("cl asspat h: conf/ appCont ext. xm ") ;

will actually load its bean definitions from the classpath. However, it is dtill a
Fi | eSyst emXni Appl i cati onCont ext . If it is subsequently used as a Resour ceLoader , any unprefixed paths will
still be treated as filesystem paths.

4.7.1.1. Constructing d assPat hXxn Appl i cati onCont ext instances - shortcuts

The d assPat hxn Appl i cati onCont ext €xposes a humber of constructors to enable convenient instantiation.
The basic idea is that one supplies merely a string array containing just the filenames of the XML files
themselves (without the leading path information), and one also supplies a dass; the
O assPat hXni Appl i cati onCont ext Will derive the path information from the supplied class.

An example will hopefully make this clear. Consider a directory layout that looks like this:

cond
f oo/
services. xn
daos. xm
Messenger Ser vi ce. cl ass

A d assPat hxnl Appl i cati onCont ext instance composed of the beans defined in the ' services. xm* and
" daos. xm * could be instantiated like so...

ApplicationContext ctx = new C assPat hXm Appli cati onCont ext (
new String[] {"services.xm", "daos.xm "}, Messenger Service. cl ass);

Please do consult the Javadocs for the C assPat hxnl Appl i cati onCont ext class for details of the various
constructors.

4.7.2. Wildcards in application context constructor resource paths

Spring Framework (2.5.6) 112

Resources

The resource paths in application context constructor values may be a simple path (as shown above) which has
a one-to-one mapping to a target Resource, or alternately may contain the specia "classpath*:" prefix and/or
internal Ant-style regular expressions (matched using Spring's Pat hvat cher utility). Both of the latter are
effectively wildcards

One use for this mechanism is when doing component-style application assembly. All components can "publish’
context definition fragments to a well-known location path, and when the final application context is created
using the same path prefixed viacl asspat h*: , al component fragments will be picked up automatically.

Note that this wildcarding is specific to use of resource paths in application context constructors (or when using
the Pat hmvat cher utility class hierarchy directly), and is resolved at construction time. It has nothing to do with
the Resour ce type itself. It's not possible to use the cl asspat h*: prefix to construct an actual Resource, as a
resource points to just one resource at atime.

4.7.2.1. Ant-style Patterns

When the path location contains an Ant-style pattern, for example:

/ \EB- | NF/ * - cont ext . xm

com nyconpany/ **/ appl i cati onCont ext . xmi

file: C/sonme/path/*-context.xmn

cl asspat h: conf myconpany/ **/ appl i cati onCont ext . xm

... the resolver follows a more complex but defined procedure to try to resolve the wildcard. It produces a
Resource for the path up to the last non-wildcard segment and obtains a URL from it. If this URL isnot a"jar:"
URL or container-specific variant (e.g. "zip:" in WeblLogic, "wsjar" in WebSphere, etc.), then a
java.io. File isobtained from it and used to resolve the wildcard by traversing the filesystem. In the case of a
jar URL, the resolver either gets aj ava. net. Jar URLConnect i on from it or manually parses the jar URL and
then traverses the contents of the jar file to resolve the wildcards.

4.7.2.1.1. Implications on portability

If the specified path is already afile URL (either explicitly, or implicitly because the base Resour ceLoader isa
filesystem one, then wildcarding is guaranteed to work in a completely portable fashion.

If the specified path is a classpath location, then the resolver must obtain the last non-wildcard path segment
URL viaad assl oader . get Resour ce() cal. Since thisis just a node of the path (not the file at the end) it is
actually undefined (in the d assLoader Javadocs) exactly what sort of a URL is returned in this case. In
practice, it is always a j ava. i o. Fi |l e representing the directory, where the classpath resource resolves to a
filesystem location, or a jar URL of some sort, where the classpath resource resolves to a jar location. Still,
there is a portability concern on this operation.

If a jaa URL is obtained for the last non-wildcard segment, the resolver must be able to get a
j ava. net . Jar URLConnect i on from it, or manually parse the jar URL, to be able to walk the contents of the jar,
and resolve the wildcard. This will work in most environments, but will fail in others, and it is strongly
recommended that the wildcard resolution of resources coming from jars be thoroughly tested in your specific
environment before you rely onit.

4.7.2.2. The cl asspat h*: prefix

When constructing an XML-based application context, a location string may use the special cl asspat h*:
prefix:

Appl i cationContext ctx =
new Cl assPat hXm Appl i cati onCont ext (" cl asspat h*: conf/ appCont ext. xm ") ;

Spring Framework (2.5.6) 113

Resources

This special prefix specifies that all classpath resources that match the given name must be obtained (internally,
this essentialy happens via a d assLoader. get Resources(...) cal), and then merged to form the fina
application context definition.

Classpath*: portability

A The wildcard classpath relies on the get Resour ces() method of the underlying classloader. As
most application servers nowadays supply their own classloader implementation, the behavior
might differ especially when dealing with jar files. A simple test to check if cl asspat h* worksisto
use the clasdoader to load a file from within a jar on the classpath:
get d ass() . get O assLoader () . get Resour ces(" <someFi | el nsi deTheJar>"). Try this test with
files that have the same name but are placed inside two different locations. In case an inappropriate
result is returned, check the application server documentation for settings that might affect the
classloader behavior.

The "cl asspat h*: " prefix can also be combined with a Pat hvat cher pattern in the rest of the location path, for
example "cl asspat h*: META- | NF/ *-beans. xn ". In this case, the resolution strategy is fairly smple: a
Classl oader.getResources() call is used on the last non-wildcard path segment to get all the matching resources
in the class loader hierarchy, and then off each resource the same PathMatcher resoltion strategy described
aboveis used for the wildcard subpath.

4.7.2.3. Other notes relating to wildcards

Please note that "cl asspat h*: " when combined with Ant-style patterns will only work reliably with at least
one root directory before the pattern starts, unless the actual target files reside in the file system. This means
that a pattern like "cl asspat h*: *. xm " will not retrieve files from the root of jar files but rather only from the
root of expanded directories. This originates from a limitation in the JDK's d assLoader . get Resour ces()
method which only returns file system locations for a passed-in empty string (indicating potential roots to
search).

Ant-style patterns with "cl asspat h: " resources are not guaranteed to find matching resources if the root
package to search is available in multiple class path locations. This is because a resource such as

com nyconpany/ packagel/ servi ce- cont ext . xm

may be in only one location, but when a path such as

cl asspat h: conf myconpany/ **/ servi ce- cont ext . xni

is used to try to resolve it, the resolver will work off the (first) URL returned by
get Resour ce(" conf myconpany") ;. If this base package node exists in multiple classloader locations, the actual
end resource may not be underneath. Therefore, preferably, use "cl asspat h*: " with the same Ant-style pattern
in such a case, which will search al class path |ocations that contain the root package.

4.7.3. Fi | eSyst enResour ce caveats

A FileSystenResource that is not attached to a FileSystemipplicationContext (that is, a
Fi | eSyst emAppl i cati onCont ext iSnot the actual Resour ceLoader) will treat absolute vs. relative paths as you
would expect. Relative paths are relative to the current working directory, while absolute paths are relative to
the root of the filesystem.

Spring Framework (2.5.6) 114

Resources

For backwards compatibility (historical) reasons however, this changes when the
Fi | eSyst emAppl i cati onCont ext iSthe ResourceLoader. The Fi | eSyst emAppl i cati onCont ext Simply forces
all attached Fi | eSyst enResour ce instances to treat al location paths as relative, whether they start with a
leading slash or not. In practice, this means the following are equivalent:

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext ("conf/context.xm");

Appl i cati onContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext ("/conf/context.xm");

As are the following: (Even though it would make sense for them to be different, as one case is relative and the
other absolute.)

Fi | eSyst enXml Appl i cati onContext ctx = ...;
ct x. get Resour ce("somne/ resour ce/ path/ myTenpl ate. txt");

Fi | eSyst enmXnl Appl i cati onContext ctx = ...;
ct x. get Resour ce("/ sone/ resour ce/ pat h/ nyTenpl ate. txt");

In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute paths with
Fi | eSyst enResour ce / Fi | eSyst enXni Appl i cati onCont ext , and just force the use of a Ur| Resour ce, by using
thefile: URL prefix.

/'l actual context type doesn't matter, the Resource will always be urlResource
ct x. get Resource("file:/some/resource/ path/ nyTenpl ate. txt");

/'l force this FileSystemXm ApplicationContext to load its definition via a Ul Resource
Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onContext ("file:/conf/context.xm");

Spring Framework (2.5.6) 115

Chapter 5. Validation, Data-binding, the Beanw apper,
and PropertyEditors

5.1. Introduction

There are pros and cons for considering validation as business logic, and Spring offers a design for validation
(and data binding) that does not exclude either one of them. Specifically validation should not be tied to the
web tier, should be easy to localize and it should be possible to plug in any validator available. Considering the
above, Spring has come up with aval i dat or interface that is both basic and eminently usable in every layer of
an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of an application
(or whatever objects you use to process user input). Spring provides the so-called Dat aBi nder to do exactly
that. The val i dat or and the Dat aBi nder make up the val i dat i on package, which is primarily used in but not
limited to the MV C framework.

The Beanw apper is a fundamental concept in the Spring Framework and is used in a lot of places. However,
you probably will not ever have the need to use the Beanw apper directly. Because this is reference
documentation however, we felt that some explanation might be in order. We're explaining the Beanw apper in
this chapter since if you were going to use it at all, you would probably do so when trying to bind data to
objects, which is strongly related to the Beanw apper .

Spring uses PropertyEditors all over the place. The concept of a PropertyEditor is part of the JavaBeans
specification. Just as the Beanw apper, it's best to explain the use of PropertyEditors in this chapter as well,
sinceit's closely related to the Beanw apper and the Dat aBi nder .

5.2. Validation using Spring's Vval i dat or interface

Spring's features a val i dat or interface that you can use to validate objects. The val i dat or interface works
using an Error s object so that while validating, validators can report validation failures to the Er r or s abject.

Let's consider a small data object:

public class Person {

private String nane;
private int age;

// the usual getters and setters...

}

We're going to provide validation behavior for the Per son class by implementing the following two methods of
theorg. spri ngf ramewor k. val i dati on. Val i dat or interface:

e supports(d ass) - Canthisval i dat or validate instances of the supplied c ass?
e validate(bject, org.springfranmework.validation.Errors) - validates the given object and in case of
validation errors, registers those with the given r r or s object

Implementing a val i dat or isfairly straightforward, especially when you know of the val i dati onUti | s helper
class that the Spring Framework also provides.

Spring Framework (2.5.6) 116

Validation, Data-binding, the Beanw apper , and

public class PersonValidator inplenents Validator {

/**
* This validator validates just Person i nstances
*/
publ i ¢ bool ean supports(d ass clazz) {
return Person. cl ass. equal s(cl azz);
}

public void validate(Cbject obj, Errors e) {
ValidationUils.rejectlfEmpty(e, "nanme", "name.enpty");
Person p = (Person) obj;

if (p.getAge() < 0) {

e.rejectVal ue("age", "negativeval ue");
} else if (p.getAge() > 110) {
e.rejectVal ue("age", "too.darn.old");

}

As you can see, the static reject!fEnpty(..) method on the validationUtils classis used to rgect the
"name' property if itisnul | or the empty string. Have alook at the Javadoc for the val i dationUtils classto
see what functionality it provides besides the example shown previoudly.

While it is certainly possible to implement a single val i dat or class to validate each of the nested objectsin a
rich object, it may be better to encapsulate the validation logic for each nested class of object in its own
val i dat or implementation. A simple example of a 'rich' object would be a cust orer that is composed of two
String properties (a first and second name) and a complex Address object. Address objects may be used
independently of cust omer objects, and so a distinct AddressVal i dat or has been implemented. If you want
your Cust oner Val i dat or t0 reuse the logic contained within the Addr essVal i dat or class without recourse to
copy-n-paste you can dependency-inject or instantiate an Addr essVal i dat or within your Cust orer val i dat or,
and useit like so:
public class CustonerValidator inplenments Validator {
private final Validator addressValidator;
publ i c CustonerValidator(Validator addressValidator) {
i f (addressValidator == null) {
throw new |11 egal Argunent Excepti on("The supplied [Validator] is required and nmust not be null.");
i f (!addressValidator. supports(Address.class)) {

throw new ||| egal Argument Excepti on(
"The supplied [Validator] must support the validation of [Address] instances.");

}
thi s. addressVal i dator = addressVal i dator;
}
/**
* This validator validates customer instances, and any subcl asses of custoner too0
*/

publ i c bool ean supports(d ass clazz) {
return Custoner.cl ass.isAssi gnabl eFron{cl azz);
}

public void validate(Cbject target, Errors errors) {
ValidationUils.rejectlfEnmptyO Witespace(errors, "firstName", "field.required");

ValidationUils.rejectlfEnmptyO Witespace(errors, "surname", "field.required");
Cust omer customer = (Custoner) target;
try {

errors. pushNest edPat h("addr ess") ;
Val i dationUils.invokeValidator(this.addressValidator, custoner.getAddress(), errors);

} finally {
errors. popNest edPat h();
}

Spring Framework (2.5.6) 117

PropertyEditors

Validation errors are reported to the Er r or s object passed to the validator. In case of Spring Web MV C you can
use <spri ng: bi nd/ > tag to inspect the error messages, but of course you can also inspect the errors object
yourself. More information about the methods it offers can be found from the Javadoc.

5.3. Resolving codes to error messages

We've talked about databinding and validation. Outputting messages corresponding to validation errors is the
last thing we need to discuss. In the example we've shown above, we rejected the nane and the age field. If
we're going to output the error messages by using a MessageSour ce, we Will do so using the error code we've
given when regjecting the field (‘'name’ and 'age’ in this case). When you call (either directly, or indirectly, using
for example the val i dationUtils class) reject Val ue or one of the other rej ect methods from the Errors
interface, the underlying implementation will not only register the code you've passed in, but also a number of
additional error codes. What error codes it registers is determined by the MessageCodesResol ver that is used.
By default, the Def aul t MessageCodesResol ver is used, which for example not only registers a message with
the code you gave, but also messages that include the field name you passed to the reject method. So in case
you reject a field using rej ect val ue("age", “"too.darn.old"), apart from the t oo. darn. ol d code, Spring
will also register t oo. darn. ol d. age and t oo. dar n. ol d. age. i nt (0 the first will include the field name and
the second will include the type of the field); this is done as a convenience to aid developers in targeting error
messages and suchlike.

More information on the MessageCodesResol ver and the default strategy can be found online with the
Javadocs for M essageCodesResolver and DefaultM essageCodesResolver respectively.

5.4. Bean manipulation and the BeanWw apper

The or g. spri ngf ramewor k. beans package adheres to the JavaBeans standard provided by Sun. A JavaBean is
simply aclass with a default no-argument constructor, which follows a naming convention where (by way of an
example) a property named bi ngoMadness would have a setter method set Bi ngoMadness(..) and a getter
method get Bi ngoMadness() . For more information about JavaBeans and the specification, please refer to Sun's
website (java.sun.com/products/javabeans).

One quite important class in the beans package is the Beanw apper interface and its corresponding
implementation (Beanw apper | npl). As quoted from the Javadoc, the Beanw apper offers functionality to set
and get property values (individualy or in bulk), get property descriptors, and to query properties to determine
if they are readable or writable. Also, the Beanw apper offers support for nested properties, enabling the setting
of properties on sub-properties to an unlimited depth. Then, the Beanw apper supports the ability to add
standard JavaBeans PropertyChangelisteners and Vetoabl eChangeLi steners, without the need for
supporting code in the target class. Last but not least, the Beanw apper provides support for the setting of
indexed properties. The Beanw apper usually isn't used by application code directly, but by the Dat aBi nder and
the BeanFact ory.

The way the Beanw apper works is partly indicated by its name: it wraps a bean to perform actions on that
bean, like setting and retrieving properties.

5.4.1. Setting and getting basic and nested properties

Setting and getting properties is done using the set Pr oper t yval ue(s) and get Propert yVval ue(s) methods that
both come with a couple of overloaded variants. They're al described in more detail in the Javadoc Spring
comes with. What's important to know is that there are a couple of conventions for indicating properties of an
object. A couple of examples:

Spring Framework (2.5.6) 118

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/validation/MessageCodesResolver.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/validation/DefaultMessageCodesResolver.html
http://java.sun.com/products/javabeans/

Validation, Data-binding, the Beanw apper , and

Table 5.1. Examples of properties

Expression Explanation

name Indicates the property name corresponding to the methods get Nane() Of i sNane()
and set Narre(.. .)

account . nane Indicates the nested property nane of the property account corresponding e.g. to
the methods get Account () . set Nane() Or get Account (). get Narre()

account [2] Indicates the third element of the indexed property account . Indexed properties
can be of typearray, | i st or other naturally ordered collection

account [COVPANYNAVE] Indicates the value of the map entry indexed by the key COMPANYNAME of the
Map property account

Below you'll find some examples of working with the Beanw apper to get and set properties.

(This next section is not vitally important to you if you're not planning to work with the Beanw apper directly. If
you're just using the Dat aBi nder and the BeanFact ory and their out-of-the-box implementation, you should
skip ahead to the section about Pr oper t yEdi t or s.)

Consider the following two classes:

public class Conpany {
private String nane;
private Enpl oyee managi ngDirector;

public String getName() {
return this.nane;

public void setNane(String nane) {
thi s. name = nang;

}
publ i c Enpl oyee get Managi ngDi rector () {
return this. managi ngDirector;

public void setManagi ngDirect or (Enpl oyee managi ngDi rector) {
t hi s. managi ngDi rect or = managi ngDi rect or;

}

public class Enpl oyee {
private String naneg;
private float salary;

public String getName() {
return this.nane;
}

public void setNane(String nane) {
thi s. name = nane;

}
public float getSalary() {
return sal ary;

public void setSalary(float salary) {
this.salary = sal ary;
}

The following code snippets show some examples of how to retrieve and manipulate some of the properties of
instantiated Conpani es and Enpl oyees:

BeanW apper conpany = BeanW apper | npl (new Conpany());

Spring Framework (2.5.6) 119

PropertyEditors

/] setting the conpany nane..

conpany. set PropertyVal ue("nanme", "Sone Conpany Inc.");
/Il ... can also be done like this:
PropertyVal ue val ue = new PropertyVal ue("nanme", "Sone Conpany Inc.");

conpany. set PropertyVal ue(val ue);

/Il ok, let's create the director and tie it to the conpany:

BeanW apper ji m = BeanW apper | npl (new Enpl oyee());

jimsetPropertyVal ue("nane", "Jim Stravi nsky");

conpany. set PropertyVal ue("managi ngDirector”, jim getWappedl nstance());

/'l retrieving the salary of the nmanagi ngDirector through the conpany
Fl oat salary = (Float) conpany.getPropertyVal ue("managi ngDirector.salary");

5.4.2. Built-in PropertyEditor implementations

Spring heavily uses the concept of Propert yEdi t or s to effect the conversion between an j ect and astri ng.
If you think about it, it sometimes might be handy to be able to represent properties in a different way than the
object itself. For example, a Dat e can be represented in a human readable way (as the Stri ng '2007- 14- 09"),
while we're still able to convert the human readable form back to the original date (or even better: convert any
date entered in a human readable form, back to Dat e objects). This behavior can be achieved by registering
custom editors, of type java. beans. PropertyEditor. Registering custom editors on a BeanW apper Of
aternately in a specific 10C container as mentioned in the previous chapter, gives it the knowledge of how to
convert properties to the desired type. Read more about Propert yEdi t ors in the Javadoc of the j ava. beans
package provided by Sun.

A couple of examples where property editing is used in Spring:

e setting properties on beans is done using Propert yEdi t ors. When mentioning j ava. | ang. String as the
value of a property of some bean you're declaring in XML file, Spring will (if the setter of the corresponding
property hasad ass-parameter) use the d assEdi t or to try to resolve the parameter to ad ass object.

e parsing HTTP request parameters in Spring's MV C framework is done using al kinds of PropertyEditors
that you can manually bind in al subclasses of the ConmandControl | er.

Spring has a number of built-in Propert yEdi t or s to make life easy. Each of those is listed below and they are
all located in the org. springfranewor k. beans. propertyeditors package. Most, but not al (as indicated
below), are registered by default by Beanw apper I npl . Where the property editor is configurable in some
fashion, you can of course still register your own variant to override the default one:

Table5.2. Built-in Propert yEdi t or s

Class Explanation

Byt eAr r ayPr oper t yEdi t or Editor for byte arrays. Strings will simply be converted to their
corresponding byte representations. Registered by default by
BeanW apper | npl .

C assEdit or Parses Strings representing classes to actual classes and the other
way aound. When a class is not found, an
Il egal Argunent Exception is thrown. Registered by default by
BeanW apper | npl .

Cust onmBool eanEdi t or Customizable property editor for Bool ean properties. Registered by
default by Beanw apper I npl , but, can be overridden by registering
custom instance of it as custom editor.

Cust onCol | ect i onEdi t or Property editor for Collections, converting any source Col | ecti on

Spring Framework (2.5.6) 120

Validation, Data-binding, the Beanw apper , and

Class Explanation
to agiven target Col | ect i on type.

Cust onDat eEdi t or Customizable property editor for javautil.Date, supporting a
custom DateFormat. NOT registered by default. Must be user
registered as needed with appropriate format.

Cust omNunber Edi t or Customizable property editor for any Number subclass like
Integer, Long, Float, Double. Registered by default by
BeanW apper I npl , but can be overridden by registering custom
instance of it as a custom editor.

Fi | eEdi t or Capable of resolving Strings to j ava. i o. Fi | e objects. Registered
by default by Beanw apper I npl .

| nput St r eanEdi t or One-way property editor, capable of taking a text string and
producing (via an intermediate Resour ceEdi t or and Resour ce) an
I nput Stream SO | nput Stream properties may be directly set as
Strings. Note that the default usage will not close the I nput St r eam
for you! Registered by default by Beanw apper | npl .

Local eEdi t or Capable of resolving Strings to Local e objects and vice versa (the
String format is [language]_[country]_[variant], which is the same
thing the toString() method of Locale provides). Registered by
default by Beanw apper I npl .

Pat t er nEdi t or Capable of resolving Strings to JDK 1.5 pat t ern objects and vice
versa
Properti esEditor Capable of converting Strings (formatted using the format as

defined in the Javadoc for the javalang.Properties class) to
Properties oObjects. Registered by default by Beanw apper | npl .

StringTri mrer Edi t or Property editor that trims Strings. Optionally allows transforming
an empty string into anul | value. NOT registered by default; must
be user registered as needed.

URLEdi t or Capable of resolving a String representation of a URL to an actual

URL object. Registered by default by Beanw apper I npl .

Spring uses the j ava. beans. Propert yEdi t or Manager t0 set the search path for property editors that might be
needed. The search path aso includes sun. bean. edi t or s, which includes PropertyEdi t or implementations
for types such as Font, Col or, and most of the primitive types. Note also that the standard JavaBeans
infrastructure will automatically discover propertyEditor classes (without you having to register them
explicitly) if they are in the same package as the class they handle, and have the same name as that class, with
"Editor' appended; for example, one could have the following class and package structure, which would be
sufficient for the FooEdi t or classto be recognized and used as the Pr oper t yEdi t or for Foo-typed properties.

com
chank
pop
Foo
FooEdi t or /1 the PropertyEditor for the Foo cl ass

Note that you can also use the standard Beanlnfo JavaBeans mechanism here as well (described in
not-amazing-detail here). Find below an example of using the Beanl nf o mechanism for explicitly registering

Spring Framework (2.5.6) 121

http://java.sun.com/docs/books/tutorial/javabeans/customization/index.html
http://java.sun.com/docs/books/tutorial/javabeans/customization/index.html

PropertyEditors

one or more Proper t yEdi t or instances with the properties of an associated class.

com
chank

pop
Foo
FooBeanl nf o /] the Beaninfo for the Foo cl ass

Here is the Java source code for the referenced FooBeanlinfo class. This would associate a
Cust om\unber Edi t or With the age property of the Foo class.

public class FooBeanl nfo extends SinpleBeanlnfo {

public PropertyDescriptor[] getPropertyDescriptors() {
try {

final PropertyEditor nunmber PE = new Cust onmNunber Edi t or (| nt eger. cl ass, true);

PropertyDescri ptor ageDescriptor = new PropertyDescriptor("age", Foo.class) {
public PropertyEditor createPropertyEditor(Object bean) {

return number PE;

b

b

return new PropertyDescriptor[] { ageDescriptor };

catch (I ntrospecti onException ex) {
throw new Error(ex.toString());
}

5.4.2.1. Registering additional custom PropertyEdi tors

When setting bean properties as a string value, a Spring 10C container ultimately uses standard JavaBeans
Proper t yEdi t or s t0 convert these Strings to the complex type of the property. Spring pre-registers a number of
custom Proper t yEdi t or s (for example, to convert a classname expressed as a string into areal d ass object).
Additionally, Java's standard JavaBeans Pr opert yEdi t or lookup mechanism allows a Propert yEdi tor for a
class simply to be named appropriately and placed in the same package as the class it provides support for, to
be found automatically.

If there is a need to register other custom Propert yEdi t or s, there are several mechanisms available. The most
manual approach, which is not normally convenient or recommended, is to simply use the
regi ster CustonEdi tor () method of the Configurabl eBeanFactory interface, assuming you have a
BeanFact ory reference. Another, dlightly more convenient, mechanism is to use a specia bean factory
post-processor called cust onEdi t or Confi gurer. Although bean factory post-processors can be used with
BeanFact ory implementations, the Cust onEdi t or Confi gurer has a nested property setup, so it is strongly
recommended that it is used with the Appl i cat i onCont ext , where it may be deployed in similar fashion to any
other bean, and automatically detected and applied.

Note that al bean factories and application contexts automatically use a number of built-in property editors,
through their use of something called a Beanw apper to handle property conversions. The standard property
editors that the Beanw apper registers are listed in the previous section. Additionally, Appli cati onCont ext s
also override or add an additional number of editors to handle resource lookups in a manner appropriate to the
specific application context type.

Standard JavaBeans Propert yEdi t or instances are used to convert property values expressed as strings to the
actual complex type of the property. Cust onEdi t or Confi gur er, a bean factory post-processor, may be used to
conveniently add support for additional Pr opert yEdi t or instancesto an Appl i cat i onCont ext .

Consider a user class Exot i cType, and another class DependsnExot i cType Which needs Exot i cType Set as a
property:

Spring Framework (2.5.6) 122

Validation, Data-binding, the Beanw apper , and

package exanpl e;
public class ExoticType {
private String naneg;

public ExoticType(String name) {
thi s. name = nang;

}
}

public class DependsOnExoticType {
private ExoticType type;
public void set Type(ExoticType type) {

this.type = type;
}

When things are properly set up, we want to be able to assign the type property as a string, which a
Pr oper t yEdi t or will behind the scenes convert into an actual Exot i cType instance:

<bean i d="sanpl e" cl ass="exanpl e. DependsOnExoti cType" >
<property name="type" val ue="aNanmeFor Exoti cType"/>
</ bean>

The Proper t yEdi t or implementation could ook similar to this:

/'l converts string representation to ExoticType 0bj ect
package exanpl e;

public class ExoticTypeEditor extends PropertyEditorSupport {
private String format;

public void setFormat(String format) {
this.format = format;

}
public void set AsText(String text) {
if (format !'= null && format.equal s("upperCase")) {
text = text.toUpperCase();
}
Exoti cType type = new ExoticType(text);
set Val ue(type);
}

Finally, we use cust onEdi t or Conf i gur er tO register the new Propert yEdi t or With the Appl i cati onCont ext,
which will then be able to use it as needed:

<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. Cust onEdi t or Confi gurer">
<property name="cust omkEdi t ors">
<map>
<entry key="exanpl e. Exoti cType">
<bean cl ass="exanpl e. Exoti cTypeEdi tor">
<property nanme="format" val ue="upper Case"/>
</ bean>
</entry>
</ map>
</ property>
</ bean>

5.4.2.1.1. Using PropertyEdi tor Regi strars

Another mechanism for registering property editors with the Spring container is to create and use a

Spring Framework (2.5.6) 123

PropertyEditors

Proper t yEdi t or Regi st rar . Thisinterface is particularly useful when you need to use the same set of property
editors in severa different situations. write a corresponding registrar and reuse that in each case.
PropertyEdi t or Regi strars Work in conjunction with an interface called PropertyEditorRegistry, an
interface that is implemented by the Spring Beanw apper (and Dat aBi nder). Propert yEdi t or Regi strars are
particularly convenient when used in conjunction with the cust onEdi t or Confi gurer (introduced here), which
exposes a property called setPropertyEditorRegistrars(..): PropertyEditorRegistrars added to a
Cust orEdi t or Conf i gur er in thisfashion can easily be shared with Dat aBi nder and Spring MV C Control | ers.
Furthermore, it avoids the need for synchronization on custom editors: a PropertyEditorRegistrar iS
expected to create fresh Propert yEdi t or instances for each bean creation attempt.

Using a Proper t yEdi t or Regi strar IS perhaps best illustrated with an example. First off, you need to create
your own Pr oper t yEdi t or Regi st rar implementation:

package com foo. editors. spring;
public final class CustonPropertyEditorRegistrar inplements PropertyEditorRegistrar {
public void registerCustonEditors(PropertyEditorRegistry registry) {

/] it is expected that new PropertyEditor i nstances are created
regi stry.registerCust ontdi t or (Exoti cType. cl ass, new Exoti cTypeEditor());

/1 you could register as many custom property editors as are required here...

See adso the org. springfranmework. beans. support. ResourceEdi torRegistrar for an example
Pr opert yEdi t or Regi strar implementation. Notice how in its implementation of the
regi st er Cust onEdi tors(..) method it creates new instances of each property editor.

Next we configure a Cust onEdi t or Conf i gur er and inject an instance of our Cust onPr opert yEdi t or Regi str ar
into it:
<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. Cust onEdi t or Confi gurer">
<property nanme="propertyEditorRegistrars">
<list>
<ref bean="custonPropertyEditorRegistrar"/>
</list>

</ property>
</ bean>

<bean i d="cust onPropertyEdi torRegi strar" class="com foo. editors.spring. CustonPropertyEditorRegistrar"/>

Finally, and in a bit of a departure from the focus of this chapter, for those of you using Spring's MVC web
framework, using PropertyEditorRegistrars in conjunction with data-binding Controllers (such as
Si npl eFor nCont rol | er) can be very convenient. Find below an example of using a Proper t yEdi t or Regi strar
in the implementation of ani ni t Bi nder (. .) method:

public final class RegisterUserController extends SinpleFornController {
private final PropertyEditorRegistrar custonPropertyEditorRegistrar;
publ i ¢ Regi sterUserController(PropertyEditorRegi strar propertyEditorRegistrar) {
t hi s. cust onPropertyEditorRegi strar = propertyEditorRegistrar;
}

protected void initBinder(HttpServl et Request request, ServletRequestDataBi nder binder) throws Exception {
thi s. cust onmPropert yEdi t or Regi strar.regi sterCust onEdi t or s(bi nder);
}

/! other methods to do with registering a User

Spring Framework (2.5.6) 124

Validation, Data-binding, the Beanw apper , and

This style of propert yEdi t or registration can lead to concise code (the implementation of i ni t Bi nder(..) is
just one line long!), and allows common Propert yEdi t or registration code to be encapsulated in a class and
then shared amongst as many Cont r ol | er s as needed.

Spring Framework (2.5.6) 125

Chapter 6. Aspect Oriented Programming with
Spring

6.1. Introduction

Aspect-Oriented Programming (AOP) complements Object-Oriented Programming (OOP) by providing
another way of thinking about program structure. The key unit of modularity in OOP is the class, whereas in
AOP the unit of modularity is the aspect. Aspects enable the modularization of concerns such as transaction
management that cut across multiple types and objects. (Such concerns are often termed crosscutting concerns
in AOP literature.)

One of the key components of Spring is the AOP framework. While the Spring 1oC container does not depend
on AOP, meaning you do not need to use AOP if you don't want to, AOP complements Spring 10C to provide a
very capable middleware solution.

Spring 2.0 AOP

Spring 2.0 introduces a simpler and more powerful way of writing custom aspects using either a
schemar-based approach or the @A spectJ annotation style. Both of these styles offer fully typed advice
and use of the AspectJ pointcut language, while still using Spring AOP for weaving.

The Spring 2.0 schema- and @A spectJ-based AOP support is discussed in this chapter. Spring 2.0 AOP
remains fully backwards compatible with Spring 1.2 AOP, and the lower-level AOP support offered by
the Spring 1.2 APIs is discussed in the following chapter.

AOP isused in the Spring Framework to...

... provide declarative enterprise services, especialy as a replacement for EJB declarative services. The most
important such service is declarative transaction management.

... dlow usersto implement custom aspects, complementing their use of OOP with AOP.

If you are interested only in generic declarative services or other pre-packaged declarative middieware
services such as pooling, you do not need to work directly with Spring AOP, and can skip most of this chapter.

6.1.1. AOP concepts

Let us begin by defining some central AOP concepts and terminology. These terms are not Spring-specific...
unfortunately, AOP terminology is not particularly intuitive; however, it would be even more confusing if
Spring used its own terminology.

« Aspect: a modularization of a concern that cuts across multiple classes. Transaction management is a good
example of a crosscutting concern in J2EE applications. In Spring AOP, aspects are implemented using
regular classes (the schema-based approach) or regular classes annotated with the @spect annotation (the

@spect J style).

« Join point: a point during the execution of a program, such as the execution of a method or the handling of an
exception. In Spring AOP, ajoin point always represents a method execution.

Spring Framework (2.5.6) 126

Aspect Oriented Programming with Spring

e Advice: action taken by an aspect at a particular join point. Different types of advice include "around,"
"before" and "after" advice. (Advice types are discussed below.) Many AOP frameworks, including Spring,
model an advice as an interceptor, maintaining a chain of interceptors around the join point.

« Pointcut: a predicate that matches join points. Advice is associated with a pointcut expression and runs at any
join point matched by the pointcut (for example, the execution of a method with a certain name). The
concept of join points as matched by pointcut expressions is central to AOP, and Spring uses the AspectJ
pointcut expression language by default.

« Introduction: declaring additional methods or fields on behalf of atype. Spring AOP alows you to introduce
new interfaces (and a corresponding implementation) to any advised object. For example, you could use an
introduction to make a bean implement an | smbdi fi ed interface, to simplify caching. (An introduction is
known as an inter-type declaration in the AspectJ community.)

» Target abject: object being advised by one or more aspects. Also referred to as the advised object. Since
Spring AOP isimplemented using runtime proxies, this object will always be a proxied object.

* AOP proxy: an object created by the AOP framework in order to implement the aspect contracts (advise
method executions and so on). In the Spring Framework, an AOP proxy will be a JDK dynamic proxy or a
CGLIB proxy.

» Weaving: linking aspects with other application types or objects to create an advised object. This can be done
at compile time (using the AspectJ compiler, for example), load time, or at runtime. Spring AOP, like other
pure Java AOP frameworks, performs weaving at runtime.

Types of advice:

« Before advice: Advice that executes before a join point, but which does not have the ability to prevent
execution flow proceeding to the join point (unlessit throws an exception).

 After returning advice: Advice to be executed after ajoin point completes normally: for example, if a method
returns without throwing an exception.

 After throwing advice: Advice to be executed if a method exits by throwing an exception.

« After (finally) advice: Advice to be executed regardliess of the means by which ajoin point exits (normal or
exceptional return).

e Around advice: Advice that surrounds a join point such as a method invocation. This is the most powerful
kind of advice. Around advice can perform custom behavior before and after the method invocation. It isaso
responsible for choosing whether to proceed to the join point or to shortcut the advised method execution by
returning its own return value or throwing an exception.

Around advice is the most general kind of advice. Since Spring AOP, like Aspect], provides a full range of
advice types, we recommend that you use the least powerful advice type that can implement the required
behavior. For example, if you need only to update a cache with the return value of a method, you are better off
implementing an after returning advice than an around advice, although an around advice can accomplish the
same thing. Using the most specific advice type provides a simpler programming model with less potential for
errors. For example, you do not need to invoke the proceed() method on the Joi nPoi nt used for around
advice, and hence cannot fail to invoke it.

In Spring 2.0, al advice parameters are statically typed, so that you work with advice parameters of the
appropriate type (the type of the return value from a method execution for example) rather than obj ect arrays.

Spring Framework (2.5.6) 127

Aspect Oriented Programming with Spring

The concept of join points, matched by pointcuts, is the key to AOP which distinguishes it from older
technologies offering only interception. Pointcuts enable advice to be targeted independently of the
Object-Oriented hierarchy. For example, an around advice providing declarative transaction management can
be applied to a set of methods spanning multiple objects (such as all business operations in the service layer).

6.1.2. Spring AOP capabilities and goals

Spring AOP isimplemented in pure Java. There is no need for a special compilation process. Spring AOP does
not need to control the class loader hierarchy, and is thus suitable for use in a J2EE web container or
application server.

Spring AOP currently supports only method execution join points (advising the execution of methods on Spring
beans). Field interception is not implemented, although support for field interception could be added without
breaking the core Spring AOP APIs. If you need to advise field access and update join points, consider a
language such as AspectJ.

Spring AOP's approach to AOP differs from that of most other AOP frameworks. The aim is not to provide the
most complete AOP implementation (although Spring AOP is quite capable); it is rather to provide a close
integration between AOP implementation and Spring 10oC to help solve common problems in enterprise
applications.

Thus, for example, the Spring Framework's AOP functionality is normally used in conjunction with the Spring
loC container. Aspects are configured using normal bean definition syntax (although this allows powerful
"autoproxying" capabilities): this is a crucia difference from other AOP implementations. There are some
things you cannot do easily or efficiently with Spring AOP, such as advise very fine-grained objects (such as
domain objects typically): Aspectd is the best choice in such cases. However, our experience is that Spring
AOP provides an excellent solution to most problems in J2EE applications that are amenable to AOP.

Spring AOP will never strive to compete with AspectJ to provide a comprehensive AOP solution. We believe
that both proxy-based frameworks like Spring AOP and full-blown frameworks such as Aspect] are valuable,
and that they are complementary, rather than in competition. Spring 2.0 seamlessly integrates Spring AOP and
loC with AspectJ, to enable all uses of AOP to be catered for within a consistent Spring-based application
architecture. This integration does not affect the Spring AOP API or the AOP Alliance API: Spring AOP
remains backward-compatible. See the following chapter for a discussion of the Spring AOP APIs.

Note
e

One of the central tenets of the Spring Framework is that of non-invasiveness, this is the idea that
you should not be forced to introduce framework-specific classes and interfaces into your
business/domain model. However, in some places the Spring Framework does give you the option
to introduce Spring Framework-specific dependencies into your codebase: the rationale in giving
you such options is because in certain scenarios it might be just plain easier to read or code some
specific piece of functionality in such away. The Spring Framework (almost) always offers you the
choice though: you have the freedom to make an informed decision as to which option best suits
your particular use case or scenario.

One such choice that is relevant to this chapter is that of which AOP framework (and which AOP
style) to choose. Y ou have the choice of Aspectd and/or Spring AOP, and you aso have the choice
of either the @A spectJ annotation-style approach or the Spring XML configuration-style approach.
The fact that this chapter chooses to introduce the @AspectJ-style approach first should not be
taken as an indication that the Spring team favors the @A spectJ annotation-style approach over the
Spring XML configuration-style.

Spring Framework (2.5.6) 128

Aspect Oriented Programming with Spring

See the section entitled Section 6.4, “Choosing which AOP declaration style to use” for a fuller
discussion of the whys and wherefores of each style.

6.1.3. AOP Proxies

Spring AOP defaults to using standard J2SE dynamic proxies for AOP proxies. This enables any interface (or
set of interfaces) to be proxied.

Spring AOP can aso use CGLIB proxies. This is necessary to proxy classes, rather than interfaces. CGLIB is
used by default if a business object does not implement an interface. As it is good practice to program to
interfaces rather than classes, business classes normally will implement one or more business interfaces. It is
possible to force the use of CGLIB, in those (hopefully rare) cases where you need to advise a method that is
not declared on an interface, or where you need to pass a proxied object to a method as a concrete type.

It is important to grasp the fact that Spring AOP is proxy-based. See the section entitled Section 6.6.1,
“Understanding AOP proxies’ for a thorough examination of exactly what this implementation detail actually
means.

6.2. @Aspect] support

@A spect] refers to a style of declaring aspects as regular Java classes annotated with Java 5 annotations. The
@A spect] style was introduced by the AspectJ project as part of the Aspectd 5 release. Spring 2.0 interprets the
same annotations as Aspectd 5, using a library supplied by Aspect] for pointcut parsing and matching. The
AOP runtimeisstill pure Spring AOP though, and there is no dependency on the AspectJ compiler or weaver.

Using the Aspectd compiler and weaver enables use of the full Aspect] language, and is discussed in
Section 6.8, “ Using AspectJ with Spring applications” .

6.2.1. Enabling @AspectJ Support

To use @A spectJ aspects in a Spring configuration you need to enable Spring support for configuring Spring
AOP based on @A spectJ aspects, and autoproxying beans based on whether or not they are advised by those
aspects. By autoproxying we mean that if Spring determines that a bean is advised by one or more aspects, it
will automatically generate a proxy for that bean to intercept method invocations and ensure that advice is
executed as needed.

The @A spectJ support is enabled by including the following element inside your spring configuration:

<aop: aspect j - aut opr oxy/ >
This assumes that you are using schema support as described in Appendix A, XML Schema-based
configuration. See Section A.2.7, “The aop schema’ for how to import the tags in the aop namespace.

If you are using the DTD, it is still possible to enable @A spectJ support by adding the following definition to
your application context:

<bean cl ass="org. spri ngf ramewor k. aop. aspectj . annot ati on. Annot at i onAwar eAspect JAut oPr oxyCreator" />

You will aso need two Aspectd libraries on the classpath of your application: aspectjweaver.jar and

Spring Framework (2.5.6) 129

http://www.eclipse.org/aspectj

Aspect Oriented Programming with Spring

aspectjrt.jar. Theselibraries are availableinthe' I'i b' directory of an Aspectdinstallation (version 1.5.1 or
later required), or inthe' 1i b/ aspect ' directory of the Spring-with-dependencies distribution.

6.2.2. Declaring an aspect

With the @Aspect] support enabled, any bean defined in your application context with a class that is an
@A spect] aspect (has the @spect annotation) will be automatically detected by Spring and used to configure
Spring AOP. The following example shows the minimal definition required for a not-very-useful aspect:

A regular bean definition in the application context, pointing to a bean class that has the @spect annotation:

<bean id="nyAspect" cl ass="org. xyz. Not Ver yUsef ul Aspect ">
<I-- configure properties of aspect here as nornal -->
</ bean>

And the Not VeryUseful Aspect class definition, annotated with org. aspectj .| ang. annot ati on. Aspect
annotation;

package org. xyz;
i nport org.aspectj .| ang. annot ati on. Aspect ;

@\spect
public class NotVeryUseful Aspect {

}

Aspects (classes annotated with @spect) may have methods and fields just like any other class. They may also
contain pointcut, advice, and introduction (inter-type) declarations.

Advising aspects

e
In Spring AOP, it is not possible to have aspects themselves be the target of advice from other
aspects. The @Aspect annotation on a class marks it as an aspect, and hence excludes it from
auto-proxying.

6.2.3. Declaring a pointcut

Recall that pointcuts determine join points of interest, and thus enable us to control when advice executes.
Sporing AOP only supports method execution join points for Spring beans, so you can think of a pointcut as
matching the execution of methods on Spring beans. A pointcut declaration has two parts. a signature
comprising a name and any parameters, and a pointcut expression that determines exactly which method
executions we are interested in. In the @A spectJ annotation-style of AOP, a pointcut signature is provided by a
regular method definition, and the pointcut expression is indicated using the @oi nt cut annotation (the method
serving as the pointcut signature must have avoi d return type).

An example will help make this distinction between a pointcut signature and a pointcut expression clear. The
following example defines a pointcut named ' anyd dTransfer' that will match the execution of any method
named' transfer':

@oi ntcut ("execution(* transfer(..))")// the pointcut expression
private void anyd dTransfer() {}// the pointcut signature

The pointcut expression that forms the value of the @oi nt cut annotation is a regular Aspect] 5 pointcut
expression. For a full discussion of AspectJ's pointcut language, see the Aspectd Programming Guide (and for

Spring Framework (2.5.6) 130

http://www.eclipse.org/aspectj/doc/released/progguide/index.html

Aspect Oriented Programming with Spring

Java 5 based extensions, the AspectJ 5 Developers Notebook) or one of the books on AspectJ such as “Eclipse
Aspect’ by Colyer et. al. or “AspectJin Action” by Ramnivas Laddad.

6.2.3.1. Supported Pointcut Designators

Spring AOP supports the following AspectJ pointcut designators (PCD) for use in pointcut expressions:

Other pointcut types

The full Aspectd pointcut language supports additional pointcut designators that are not supported in
Spring. These are: cal |, get, set, preinitialization, staticinitialization, initialization,
handl er, advi ceexecution, W thincode, cflow, cflowbelow, if, @his,and@ithi ncode. Use of
these pointcut designators in pointcut expressions interpreted by Spring AOP will result in an
I'l'| egal Argunent Except i on being thrown.

The set of pointcut designators supported by Spring AOP may be extended in future releases both to
support more of the AspectJ pointcut designators.

execution - for matching method execution join points, this is the primary pointcut designator you will use
when working with Spring AOP

within - [imits matching to join points within certain types (simply the execution of a method declared within
amatching type when using Spring AOP)

this - limits matching to join points (the execution of methods when using Spring AOP) where the bean
reference (Spring AOP proxy) is an instance of the given type

target - limits matching to join points (the execution of methods when using Spring AOP) where the target
object (application object being proxied) is an instance of the given type

args - limits matching to join points (the execution of methods when using Spring AOP) where the
arguments are instances of the given types

@ar get - limits matching to join points (the execution of methods when using Spring AOP) where the class
of the executing object has an annotation of the given type

@ gs - limits matching to join points (the execution of methods when using Spring AOP) where the runtime
type of the actual arguments passed have annotations of the given type(s)

@i thin - limits matching to join points within types that have the given annotation (the execution of
methods declared in types with the given annotation when using Spring AOP)

@annotation - limits matching to join points where the subject of the join point (method being executed in
Spring AOP) has the given annotation

Because Spring AOP limits matching to only method execution join points, the discussion of the pointcut
designators above gives anarrower definition than you will find in the AspectJ programming guide. In addition,
Aspectitself has type-based semantics and at an execution join point both 't hi s' and 't ar get ' refer to the same
object - the object executing the method. Spring AOP is a proxy-based system and differentiates between the
proxy object itself (bound to 't hi s') and the target object behind the proxy (bound to 't ar get ').

Note
“a

Spring Framework (2.5.6) 131

http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html

Aspect Oriented Programming with Spring

Due to the proxy-based nature of Spring's AOP framework, protected methods are by definition not
intercepted, neither for JDK proxies (where thisisn't applicable) nor for CGLIB proxies (where this
is technically possible but not recommendable for AOP purposes). As a consequence, any given
pointcut will be matched against public methods only!

If your interception needs include protected/private methods or even constructors, consider the use
of Spring-driven native AspectJ weaving instead of Spring's proxy-based AOP framework. This
congtitutes a different mode of AOP usage with different characteristics, so be sure to make
yourself familiar with weaving first before making a decision.

Spring AOP also supports an additional PCD named 'bean’. This PCD alows you to limit the matching of join
points to a particular named Spring bean, or to a set of named Spring beans (when using wildcards). The 'bean’
PCD has the following form:

bean(i dOr NameOf Bean)

The 'i dOr NameOf Bean' token can be the name of any Spring bean: limited wildcard support using the **
character is provided, so if you establish some naming conventions for your Spring beans you can quite easily
write a 'bean' PCD expression to pick them out. Asis the case with other pointcut designators, the 'bean' PCD
can be &&'ed, |'ed, and ! (negated) too.

Note

"9
Please note that the 'bean' PCD is only supported in Spring AOP - and not in native AspectJ
weaving. It is a Spring-specific extension to the standard PCDs that AspectJ defines.

The 'bean' PCD operates at the instance level (building on the Spring bean name concept) rather
than at the type level only (which is what weaving-based AOP is limited to). Instance-based
pointcut designators are a special capability of Spring's proxy-based AOP framework and its close
integration with the Spring bean factory, where it is natural and straightforward to identify specific
beans by name.

6.2.3.2. Combining pointcut expressions

Pointcut expressions can be combined using '& &', '||' and " It is also possible to refer to pointcut expressions
by name. The following example shows three pointcut expressions: anyPubl i cOper at i on (which matchesif a
method execution join point represents the execution of any public method); i nTr adi ng (which matches if a
method execution is in the trading module), and tr adi ngQper ati on (which matches if a method execution
represents any public method in the trading module).

@oi nt cut ("execution(public * *(.

)
private void anyPublicOperation() {}

@poi nt cut ("wi t hi n(com xyz. soneapp.trading..*)")
private void inTrading() {}

@poi nt cut ("anyPubl i cOperation() && inTrading()")
private void tradi ngOperation() {}

It is a best practice to build more complex pointcut expressions out of smaller named components as shown
above. When referring to pointcuts by name, normal Java visibility rules apply (you can see private pointcutsin
the same type, protected pointcuts in the hierarchy, public pointcuts anywhere and so on). Visibility does not

Spring Framework (2.5.6) 132

Aspect Oriented Programming with Spring

affect pointcut matching.

6.2.3.3. Sharing common pointcut definitions

When working with enterprise applications, you often want to refer to modules of the application and particular
sets of operations from within several aspects. We recommend defining a "SystemArchitecture” aspect that

captures common pointcut expressions for this purpose. A typical such aspect would look as follows:

package com xyz. someapp;

i nport org.aspectj .| ang. annot ati on. Aspect;
i nport org. aspectj .| ang. annot at i on. Poi nt cut ;

@\spect
public class SystemArchitecture {

/**

* Ajoin point is in the web layer if the method is defined

* in a type in the com xyz. sonmeapp. web package or any sub- package
* under that.

*/

@Poi ntcut ("within(com xyz. someapp. web. . *)")

public void i nWebLayer () {}

/**

* Ajoin point is in the service layer if the method is defined
* in a type in the comxyz.soneapp. service package or any sub-package
* under that.

*/

@Poi ntcut ("wi thin(com xyz. sonmeapp. service..*)")

public void inServiceLayer() {}

/**

* Ajoin point is in the data access layer if the nethod is defined
* in a type in the comxyz. soneapp. dao package or any sub-package

* under that.

*/

@poi nt cut ("wi t hi n(com xyz. soneapp. dao. . *)")

public void inDataAccessLayer() {}

*

/
A business service is the execution of any nethod defined on a service
interface. This definition assunes that interfaces are placed in the
"service" package, and that inplenentation types are in sub-packages.

If you group service interfaces by functional area (for exanple,
i n packages com xyz. soneapp. abc. service and com xyz. def.service) then
the poi ntcut expression "execution(* com xyz.soneapp..service.*.*(..))"
coul d be used instead.

Alternatively, you can wite the expression using the 'bean'
PCD, like so "bean(*Service)". (This assunmes that you have
naned your Spring service beans in a consistent fashion.)

E I I S I

*

*/
@Poi nt cut ("execution(* com xyz.soneapp.service.*.*(..))")
public void businessService() {}

/**

* A data access operation is the execution of any method defined on a

* dao interface. This definition assumes that interfaces are placed in the
* "dao" package, and that inplenentation types are in sub-packages.

*/

@Poi nt cut ("execution(* com xyz.sonmeapp.dao.*.*(..))")

public void dataAccessOperation() {}

The pointcuts defined in such an aspect can be referred to anywhere that you need a pointcut expression. For

example, to make the service layer transactional, you could write:

<aop: config>
<aop: advi sor

Spring Framework (2.5.6)

133

Aspect Oriented Programming with Spring

poi nt cut =" com xyz. sonmeapp. Syst emAr chi t ect ur e. busi nessService()"
advi ce-ref ="t x-advi ce"/>
</ aop: confi g>

<t x: advi ce id="t x-advice">
<tx:attributes>
<t x: met hod name="*" propagati on="REQU RED"/ >
</tx:attributes>
</t x: advi ce>

The <aop: confi g> and <aop: advi sor> elements are discussed in Section 6.3, “Schema-based AOP support”.
The transaction elements are discussed in Chapter 9, Transaction management.

6.2.3.4. Examples

Spring AOP users are likely to use the execution pointcut designator the most often. The format of an
execution expression is:

execution(nodifiers-pattern? ret-type-pattern decl aring-type-pattern? nane-pattern(param pattern)
t hrows- pattern?)

All parts except the returning type pattern (ret-type-pattern in the snippet above), name pattern, and parameters
pattern are optional. The returning type pattern determines what the return type of the method must be in order
for ajoin point to be matched. Most frequently you will use * as the returning type pattern, which matches any
return type. A fully-qualified type name will match only when the method returns the given type. The name
pattern matches the method name. Y ou can use the * wildcard as all or part of a name pattern. The parameters
pattern is dightly more complex: () matches a method that takes no parameters, whereas (. .) matches any
number of parameters (zero or more). The pattern (*) matches a method taking one parameter of any type,
(*, String) matches amethod taking two parameters, the first can be of any type, the second must be a String.
Consult the Language Semantics section of the AspectJ Programming Guide for more information.

Some examples of common pointcut expressions are given below.

« the execution of any public method:

execution(public * *(..))

« the execution of any method with a name beginning with "set":

execution(* set*(..))

« the execution of any method defined by the Account Ser vi ce interface:

execution(* com xyz. servi ce. Account Service. *(..))

* the execution of any method defined in the service package:

execution(* com xyz.service.*.*(..))

« the execution of any method defined in the service package or a sub-package:

execution(* com xyz.service..*.*(..))

Spring Framework (2.5.6) 134

http://www.eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html

Aspect Oriented Programming with Spring

e any join point (method execution only in Spring AOP) within the service package:

wi t hi n(com xyz. service. *)

 any join point (method execution only in Spring AOP) within the service package or a sub-package:

Wi t hi n(com xyz. service. .*)

e any join point (method execution only in Spring AOP) where the proxy implements the Account Servi ce
interface:

thi s(com xyz. servi ce. Account Servi ce)

'this' is more commonly used in a binding form :- see the following section on advice for how to make the
proxy object available in the advice body.

e any join point (method execution only in Spring AOP) where the target object implements the
Account Ser vi ce interface:

target (com xyz. servi ce. Account Ser vi ce)

'target’ is more commonly used in a binding form :- see the following section on advice for how to make the
target object available in the advice body.

« any join point (method execution only in Spring AOP) which takes a single parameter, and where the
argument passed at runtimeis Seri al i zabl e:

args(java.io. Serializable)

‘args' is more commonly used in a binding form :- see the following section on advice for how to make the
method arguments available in the advice body.

Note that the pointcut given in this example is different to execution(* *(java.io. Serializable)): the
args version matches if the argument passed at runtime is Serializable, the execution version matches if the

method signature declares a single parameter of type Seri al i zabl e.

e any join point (method execution only in Spring AOP) where the target object has an @r ansact i onal
annotation:

@ ar get (org. springfranework. transacti on. annot ati on. Tr ansacti onal)
'‘@target’ can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

e any join point (method execution only in Spring AOP) where the declared type of the target object has an
@r ansact i onal annotation:

@ t hin(org. springframework.transacti on. annotati on. Transacti onal)

‘@within' can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

e any join point (method execution only in Spring AOP) where the executing method has an @t ansact i onal

Spring Framework (2.5.6) 135

Aspect Oriented Programming with Spring

annotation:

@nnot ati on(org. springfranework. transaction. annot ati on. Transacti onal)

‘@annotation’ can also be used in a binding form :- see the following section on advice for how to make the
annotation object available in the advice body.

e any join point (method execution only in Spring AOP) which takes a single parameter, and where the
runtime type of the argument passed has the @ assi f i ed annotation:

@rgs(com xyz. security. C assified)

'@args can also be used in a binding form :- see the following section on advice for how to make the
annotation object(s) available in the advice body.

e any join point (method execution only in Spring AOP) on a Spring bean named 't r adeSer vi ce':

bean(tradeService)

e any join point (method execution only in Spring AOP) on Spring beans having names that match the
wildcard expression ** Ser vi ce":

bean(* Servi ce)

6.2.4. Declaring advice

Advice is associated with a pointcut expression, and runs before, after, or around method executions matched
by the pointcut. The pointcut expression may be either a simple reference to a named pointcut, or a pointcut
expression declared in place.

6.2.4.1. Before advice

Before adviceis declared in an aspect using the @ef or e annotation:

i nport org. aspectj .| ang. annot ati on. Aspect ;
i mport org.aspectj.|ang.annotation. Before;

@\spect
public cl ass BeforeExanple {

@Bef ore("com xyz. myapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public void doAccessCheck() {
...

}

If using an in-place pointcut expression we could rewrite the above example as:

i nport org.aspectj .| ang. annot ati on. Aspect ;
i mport org.aspectj.|ang.annotation. Before;

@\spect
public class BeforeExanple {

@Bef ore("execution(* com xyz. nyapp.dao.*.*(..))")
public void doAccessCheck() {
...

Spring Framework (2.5.6) 136

Aspect Oriented Programming with Spring

6.2.4.2. After returning advice

After returning advice runs when a matched method execution returns normally. It is declared using the
@\f t er Ret ur ni ng annotation:

i nport org.aspectj .| ang. annot ati on. Aspect;
i mport org.aspectj.|ang.annotation. AfterReturning;

@\spect
public class AfterReturni ngExanpl e {

@Af t er Ret ur ni ng("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessQperation()")
public void doAccessCheck() {
...

}
}

Note: it is of course possible to have multiple advice declarations, and other members as well, all inside the
same aspect. We're just showing a single advice declaration in these examples to focus on the issue under
discussion at the time.

Sometimes you need access in the advice body to the actual value that was returned. Y ou can use the form of
@\f t er Ret ur ni ng that binds the return value for this:

i nport org. aspectj .| ang. annot ati on. Aspect ;
i mport org.aspectj.|ang.annotation. AfterReturning;

@\spect
public class AfterReturni ngExanpl e {

@Af t er Ret ur ni ng(
poi nt cut =" com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessQperation()",
returning="retVal")

public void doAccessCheck(oject retVal) {
...

}

The name used in the r et ur ni ng attribute must correspond to the name of a parameter in the advice method.
When a method execution returns, the return value will be passed to the advice method as the corresponding
argument value. A r et ur ni ng clause also restricts matching to only those method executions that return avalue
of the specified type (ovj ect in this case, which will match any return value).

Please note that it is not possible to return atotally different reference when using after-returning advice.

6.2.4.3. After throwing advice

After throwing advice runs when a matched method execution exits by throwing an exception. It is declared
using the @ t er Thr owi ng annotation:

i mport org.aspectj.|ang.annotation. Aspect;
i mport org.aspectj.|ang.annot ation. After Thr owi ng;

@Aspect
public class AfterThrow ngExanpl e {

@Af t er Thr owi ng(" com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation()")
public void doRecoveryActions() {
...

Spring Framework (2.5.6) 137

Aspect Oriented Programming with Spring

Often you want the advice to run only when exceptions of a given type are thrown, and you also often need
access to the thrown exception in the advice body. Use the t hrowi ng attribute to both restrict matching (if
desired, use Thr owabl e asthe exception type otherwise) and bind the thrown exception to an advice parameter.

i nport org.aspectj .| ang. annot ati on. Aspect ;
i mport org.aspectj.|ang.annotation. After Thr owi ng;

@\spect
public class AfterThrow ngExanpl e {

@Af t er Thr owi ng(
poi nt cut ="com xyz. nmyapp. Syst emAr chi t ect ur e. dat aAccessQperation()",
t hr owi ng="ex")

public void doRecoveryActions(Dat aAccessException ex) {
1.

}

The name used in the t hr owi ng attribute must correspond to the name of a parameter in the advice method.
When a method execution exits by throwing an exception, the exception will be passed to the advice method as
the corresponding argument value. A t hr owi ng clause also restricts matching to only those method executions
that throw an exception of the specified type (Dat aAccessExcept i on in this case).

6.2.4.4. After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the @fter
annotation. After advice must be prepared to handle both normal and exception return conditions. It is typically
used for releasing resources, etc.

i mport org.aspectj.|ang.annotation. Aspect;
i mport org.aspectj.lang.annotation. After;

@Aspect
public class AfterFinallyExanple {

@\fter("comxyz. myapp. Syst emAr chi t ect ure. dat aAccessOperation()")
public void doRel easeLock() {
...

}

6.2.4.5. Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution. It has the
opportunity to do work both before and after the method executes, and to determine when, how, and even if, the
method actually gets to execute at all. Around advice is often used if you need to share state before and after a
method execution in a thread-safe manner (starting and stopping a timer for example). Always use the least
powerful form of advice that meets your requirements (i.e. don't use around advice if ssimple before advice
would do).

Around advice is declared using the @ ound annotation. The first parameter of the advice method must be of
type Proceedi ngJoi nPoi nt . Within the body of the advice, calling proceed() on the Proceedi ngJoi nPoi nt
causes the underlying method to execute. The pr oceed method may also be called passing in an j ect[] - the
valuesin the array will be used as the arguments to the method execution when it proceeds.

Spring Framework (2.5.6) 138

Aspect Oriented Programming with Spring

The behavior of proceed when called with an j ect[] is a little different than the behavior of proceed for
around advice compiled by the Aspectd compiler. For around advice written using the traditional AspectJ
language, the number of arguments passed to proceed must match the number of arguments passed to the
around advice (not the number of arguments taken by the underlying join point), and the value passed to
proceed in a given argument position supplants the original value at the join point for the entity the value was
bound to (Don't worry if this doesn't make sense right now!). The approach taken by Spring is simpler and a
better match to its proxy-based, execution only semantics. You only need to be aware of this difference if you
are compiling @AspectJ aspects written for Soring and using proceed with arguments with the AspectJ
compiler and weaver. There is a way to write such aspects that is 100% compatible across both Soring AOP
and AspectJ, and thisis discussed in the following section on advice parameters.

i mport org.aspectj.|ang.annotation. Aspect;

i mport org.aspectj .| ang.annot ati on. Around;

i mport org. aspectj .| ang. Proceedi ngJoi nPoi nt ;
@\spect

public class AroundExanpl e {

@\r ound(" com xyz. nyapp. Syst emAr chi t ect ur e. busi nessService()")
public Object doBasicProfiling(ProceedingJoi nPoint pjp) throws Throwabl e {
/] start stopwatch
oj ect retVal = pjp.proceed();
/'l stop stopwatch
return retVal;

}

The value returned by the around advice will be the return value seen by the caller of the method. A simple
caching aspect for example could return a value from a cache if it has one, and invoke proceed() if it does not.
Note that proceed may be invoked once, many times, or not at all within the body of the around advice, al of
these are quite legal.

6.2.4.6. Advice parameters

Spring 2.0 offers fully typed advice - meaning that you declare the parameters you need in the advice signature
(aswe saw for the returning and throwing examples above) rather than work with avj ect [] arraysall the time.
Well see how to make argument and other contextual values available to the advice body in a moment. First
let's take a look at how to write generic advice that can find out about the method the advice is currently
advising.

6.2.4.6.1. Access to the current Joi nPoi nt

Any advice method may declare as its first parameter, a parameter of type org. aspect]j . | ang. Joi nPoi nt
(please note that around advice is required to declare afirst parameter of type Pr oceedi ngJoi nPoi nt , which is
a subclass of Joi nPoi nt. The Joi nPoi nt interface provides a number of useful methods such as get Args()
(returns the method arguments), get Thi s() (returns the proxy object), get Tar get () (returns the target object),
get Si gnature() (returns a description of the method that is being advised) and t oString() (prints a useful
description of the method being advised). Please do consult the Javadocs for full details.

6.2.4.6.2. Passing parameters to advice

We've aready seen how to bind the returned value or exception value (using after returning and after throwing
advice). To make argument values available to the advice body, you can use the binding form of args. If a
parameter name is used in place of a type name in an args expression, then the value of the corresponding
argument will be passed as the parameter value when the advice is invoked. An example should make this
clearer. Suppose you want to advise the execution of dao operations that take an Account object as the first
parameter, and you need access to the account in the advice body. Y ou could write the following:

Spring Framework (2.5.6) 139

Aspect Oriented Programming with Spring

@Bef ore("com xyz. nyapp. Syst emAr chi t ect ur e. dat aAccessOperation() &&" +
"args(account,..)")
public void validateAccount (Account account) {
...

}

Theargs(account, ..) part of the pointcut expression serves two purposes: firstly, it restricts matching to only
those method executions where the method takes at least one parameter, and the argument passed to that
parameter is an instance of Account ; secondly, it makes the actual Account object available to the advice via
the account parameter.

Another way of writing thisis to declare a pointcut that "provides' the Account object value when it matches a
join point, and then just refer to the named pointcut from the advice. Thiswould look as follows:

@Poi nt cut ("com xyz. nyapp. Syst emAr chi t ect ure. dat aAccessQperation() &&' +
"args(account,..)")
private void account Dat aAccessOper ati on(Account account) {}

@Bef or e(" account Dat aAccessOper ati on(account)")
public void validateAccount (Account account) {
1.

}

The interested reader is once more referred to the Aspect] programming guide for more details.

The proxy object (t hi s), target object (t ar get), and annotations (@v thin, @arget, @nnotation, @urgs)
can all be bound in a similar fashion. The following example shows how you could match the execution of
methods annotated with an @udi t abl e annotation, and extract the audit code.

First the definition of the @udi t abl e annotation:

@Ret ent i on(Ret enti onPol i cy. RUNTI MVE)
@rar get (El enent Type. METHOD)
public @nterface Auditable {
Audi t Code val ue();
}

And then the advice that matches the execution of @udi t abl e methods:

@Bef ore("com xyz. | ib. Poi nt cuts. anyPubl i cMet hod() && " +
"@nnot ati on(audi table)")
public void audit(Auditable auditable) {
Audi t Code code = auditabl e.val ue();
1.

}

6.2.4.6.3. Determining argument names

The parameter binding in advice invocations relies on matching names used in pointcut expressions to declared
parameter names in (advice and pointcut) method signatures. Parameter names are not available through Java
reflection, so Spring AOP uses the following strategies to determine parameter names;

1. If the parameter names have been specified by the user explicitly, then the specified parameter names are
used: both the advice and the pointcut annotations have an optional "argNames" attribute which can be used
to specify the argument names of the annotated method - these argument names are available at runtime. For
example:

@Bef or e(
val ue="com xyz. | i b. Poi nt cuts. anyPubl i cMet hod() && target(bean) && @nnotation(auditable)",

Spring Framework (2.5.6) 140

Aspect Oriented Programming with Spring

ar gNanes="bean, audi t abl e")
public void audit(Object bean, Auditable auditable) {
Audi t Code code = auditabl e.val ue();
// ... use code and bean

}

If the first parameter is of the Joi nPoi nt, Proceedi ngJoi nPoi nt, OF Joi nPoi nt. Stati cPart type, you may
leave out the name of the parameter from the value of the "argNames" attribute. For example, if you modify
the preceding advice to receive the join point object, the "argNames' attribute need not include it:

@Bef or e(
val ue="com xyz. | i b. Poi nt cut s. anyPubl i cMet hod() && target(bean) && @nnotation(auditable)",
ar gNanes="bean, audi t abl e")
public void audit(JoinPoint jp, Object bean, Auditable auditable) {
Audi t Code code = auditabl e.val ue();
// ... use code, bean, and jp

}

The specia treatment given to the first parameter of the Joi nPoint, Proceedi ngJoinPoint, and
Joi nPoi nt . StaticPart typesis particularly convenient for advice that do not collect any other join point
context. In such situations, you may simply omit the "argNames" attribute. For example, the following
advice need not declare the "argNames' attribute:

@Bef or e(
"com xyz. |ib. Poi ntcuts. anyPubl i cMet hod()")
public void audit(JoinPoint jp) {
/Il ... usejp

}

2. Using the argNares' attribute is alittle clumsy, so if the' ar gNanes' attribute has not been specified, then
Spring AOP will look at the debug information for the class and try to determine the parameter names from
the local variable table. This information will be present as long as the classes have been compiled with
debug information (' - g: vars' a a minimum). The consequences of compiling with this flag on are: (1)
your code will be slightly easier to understand (reverse engineer), (2) the classfile sizes will be very dlightly
bigger (typically inconsequential), (3) the optimization to remove unused local variables will not be applied
by your compiler. In other words, you should encounter no difficulties building with this flag on.

If an @AspectJ aspect has been compiled by the Aspectd compiler (ajc) even without the debug information
then thereis no need to add the ar gNanes attribute as the compiler will retain the needed information.

3. If the code has been compiled without the necessary debug information, then Spring AOP will attempt to
deduce the pairing of binding variables to parameters (for example, if only one variable is bound in the
pointcut expression, and the advice method only takes one parameter, the pairing is obvious!). If the binding
of variables is ambiguous given the available information, then an Anbi guousBi ndi ngExcept i on will be
thrown.

4. If all of the above strategies fail thenan 111 egal Ar gument Except i on Will be thrown.

6.2.4.6.4. Proceeding with arguments

We remarked earlier that we would describe how to write a proceed call with arguments that works consistently
across Spring AOP and AspectJ. The solution is simply to ensure that the advice signature binds each of the
method parametersin order. For example:

@\r ound(" execution(List<Account> find*(..)) &&" +

"com xyz. nyapp. SystemArchi t ect ure. i nDat aAccessLayer () && " +

"ar gs(account Hol der NanePattern)")
public oject preProcessQueryPattern(Proceedi ngJoi nPoint pjp, String account Hol der NanePat t er n)
throws Throwabl e {

Spring Framework (2.5.6) 141

Aspect Oriented Programming with Spring

String newPattern = preProcess(account Hol der NanePat t ern) ;
return pjp.proceed(new Cbject[] {newPattern});

}

In many cases you will be doing this binding anyway (as in the example above).

6.2.4.7. Advice ordering

What happens when multiple pieces of advice all want to run at the same join point? Spring AOP follows the
same precedence rules as Aspect] to determine the order of advice execution. The highest precedence advice
runs first "on the way in" (so given two pieces of before advice, the one with highest precedence runs first).
"On the way out" from ajoin point, the highest precedence advice runs last (so given two pieces of after advice,
the one with the highest precedence will run second).

When two pieces of advice defined in different aspects both need to run at the same join point, unless you
specify otherwise the order of execution is undefined. You can control the order of execution by specifying
precedence. This is done in the norma Spring way by either implementing the
org. spri ngframewor k. core. Or der ed interface in the aspect class or annotating it with the o der annotation.
Given two aspects, the aspect returning the lower value from o der ed. get Val ue() (or the annotation value)
has the higher precedence.

When two pieces of advice defined in the same aspect both need to run at the same join point, the ordering is
undefined (since there is no way to retrieve the declaration order via reflection for javac-compiled classes).
Consider collapsing such advice methods into one advice method per join point in each aspect class, or refactor
the pieces of advice into separate aspect classes - which can be ordered at the aspect level.

6.2.5. Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised objects
implement agiven interface, and to provide an implementation of that interface on behalf of those objects.

An introduction is made using the @ecl areParents annotation. This annotation is used to declare that
matching types have a new parent (hence the name). For example, given an interface UsageTr acked, and an
implementation of that interface Def aul t UsageTr acked, the following aspect declares that al implementors of
service interfaces also implement the UsageTracked interface. (In order to expose statistics via IMX for
example.)

@\spect
public class UsageTracking {

@ecl ar ePar ent s(val ue="com xzy. nyapp. servi ce. *+",
def aul t | mpl =Def aul t UsageTr acked. cl ass)
public static UsageTracked m Xxin;

@Bef ore("com xyz. nyapp. Syst emAr chi t ect ure. busi nessServi ce() &&' +
"t hi s(usageTracked)")
public void recordUsage(UsageTracked usageTracked) {
usageTr acked. i ncrement UseCount () ;

}

The interface to be implemented is determined by the type of the annotated field. The val ue attribute of the
@ecl ar ePar ent s annotation is an Aspect] type pattern :- any bean of a matching type will implement the
UsageTracked interface. Note that in the before advice of the above example, service beans can be directly used
as implementations of the UsageTr acked interface. If accessing a bean programmatically you would write the

Spring Framework (2.5.6) 142

Aspect Oriented Programming with Spring

following:

UsageTr acked usageTracked = (UsageTracked) context.getBean("myService");

6.2.6. Aspect instantiation models
(Thisis an advanced topic, so if you are just starting out with AOP you can safely skip it until later.)

By default there will be a single instance of each aspect within the application context. Aspect] calls this the
singleton instantiation model. It is possible to define aspects with aternate lifecycles :- Spring supports
AspectJs perthis and pertarget instantiation models (percfl ow, percfl owbel ow, and pertypewithin are
not currently supported).

A "perthis' aspect is declared by specifying a perthis clause in the @spect annotation. Let's look at an
example, and then we'll explain how it works.

@\spect (" perthi s(com xyz. nyapp. Syst emAr chi t ect ur e. busi nessService())")
public class MyAspect ({

private int sonmeState;

@Bef ore(com xyz. nyapp. Syst emAr chi t ect ur e. busi nessService())
public void recordServi ceUsage() {
...

}

The effect of the ' perthis' clause is that one aspect instance will be created for each unique service object
executing a business service (each unique object bound to 'this at join points matched by the pointcut
expression). The aspect instance is created the first time that a method is invoked on the service object. The
aspect goes out of scope when the service object goes out of scope. Before the aspect instance is created, hone
of the advice within it executes. As soon as the aspect instance has been created, the advice declared within it
will execute at matched join points, but only when the service object is the one this aspect is associated with.
See the AspectJ programming guide for more information on per-clauses.

The' pertarget' instantiation model works in exactly the same way as perthis, but creates one aspect instance
for each unique target object at matched join points.

6.2.7. Example

Now that you have seen how all the constituent parts work, let's put them together to do something useful!

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock loser).
If the operation is retried, it is quite likely to succeed next time round. For business services where it is
appropriate to retry in such conditions (idempotent operations that don't need to go back to the user for conflict
resolution), wed like to transparently retry the operation to avoid the client seeing a
Pessi ni sti cLocki ngFai | ur eExcepti on. Thisis arequirement that clearly cuts across multiple services in the
service layer, and henceisideal for implementing via an aspect.

Because we want to retry the operation, we will need to use around advice so that we can call proceed multiple
times. Here's how the basic aspect implementation looks:

@\spect
public class Concurrent OperationExecutor inplenments Ordered {

private static final int DEFAULT _MAX RETRIES = 2;

private int maxRetries = DEFAULT _MAX RETRI ES;

Spring Framework (2.5.6) 143

Aspect Oriented Programming with Spring

private int order = 1;

public void setMaxRetries(int maxRetries) {
this. maxRetries = maxRetries;

}

public int getOder() {
return this.order;

}

public void setOrder(int order) {
this.order = order;

}

@\r ound(" com xyz. nyapp. Syst emAr chi t ect ur e. busi nessServi ce()")
publ i c Object doConcurrent Operati on(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
int numAttenpts = O;
Pessi mi sti cLocki ngFai | ureExcepti on | ockFai | ureExcepti on;
do {
numAt t enpt s++;

try {
return pjp.proceed();

cat ch(Pessi m sti cLocki ngFai | ureException ex) {
| ockFai | ureException = ex;

}
}
whi |l e(numAttenpts <= this. maxRetries);
throw | ockFai | ur eExcepti on;

Note that the aspect implements the o der ed interface so we can set the precedence of the aspect higher than
the transaction advice (we want a fresh transaction each time we retry). The maxRetri es and or der properties
will both be configured by Spring. The main action happens in the doConcur r ent Oper at i on around advice.
Notice that for the moment we're applying the retry logic to all busi nessServi ce()s. We try to proceed, and if
we fail with an Pessi mi sti cLocki ngFai | ur eExcepti on we simply try again unless we have exhausted all of
our retry attempts.

The corresponding Spring configuration is:

<aop: aspect j - aut opr oxy/ >

<bean i d="concurrent Qper ati onExecut or"
cl ass="com xyz. nyapp. servi ce. i npl . Concur r ent Oper at i onExecut or ">
<property name="nmaxRetries" val ue="3"/>
<property name="order" val ue="100"/>
</ bean>

To refine the aspect so that it only retries idempotent operations, we might define an | denpot ent annotation:

@Ret ent i on(Ret enti onPol i cy. RUNTI ME)
public @nterface |dempotent {
/1 marker annotation

}

and use the annotation to annotate the implementation of service operations. The change to the aspect to only
retry idempotent operations simply involves refining the pointcut expression so that only @ denpot ent
operations match:

@\r ound(" com xyz. myapp. Syst emAr chi t ect ur e. busi nessService() && " +
"@nnot ati on(com xyz. nyapp. servi ce. | denpotent)")
public Object doConcurrent Operation(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {

i

Spring Framework (2.5.6) 144

Aspect Oriented Programming with Spring

6.3. Schema-based AOP support

If you are unable to use Java 5, or simply prefer an XML-based format, then Spring 2.0 also offers support for
defining aspects using the new "aop" namespace tags. The exact same pointcut expressions and advice kinds
are supported as when using the @A spectJ style, hence in this section we will focus on the new syntax and refer
the reader to the discussion in the previous section (Section 6.2, “ @AspectJ support”) for an understanding of
writing pointcut expressions and the binding of advice parameters.

To use the aop namespace tags described in this section, you need to import the spring-aop schema as described
in Appendix A, XML Schema-based configuration. See Section A.2.7, “The aop schema” for how to import the
tags in the aop nhamespace.

Within your Spring configurations, all aspect and advisor elements must be placed within an <aop: confi g>
element (you can have more than one <aop: confi g> element in an application context configuration). An
<aop: confi g> element can contain pointcut, advisor, and aspect elements (note these must be declared in that
order).

=] Warning

The <aop: confi g> style of configuration makes heavy use of Spring's auto-proxying mechanism.
This can cause issues (such as advice not being woven) if you are already using explicit
auto-proxying via the use of BeanNaneAut oPr oxyCreat or Or suchlike. The recommended usage
pattern is to use either just the <aop: conf i g> style, or just the Aut oPr oxyCr eat or Style.

6.3.1. Declaring an aspect

Using the schema support, an aspect is simply aregular Java object defined as a bean in your Spring application
context. The state and behavior is captured in the fields and methods of the object, and the pointcut and advice
information is captured in the XML.

An aspect is declared using the <aop:aspect> element, and the backing bean is referenced using the ref
attribute:

<aop: confi g>
<aop: aspect id="nyAspect" ref="aBean">

</ aop: aspect >
</ aop: confi g>

<bean i d="aBean" class="...">

</ bean>
The bean backing the aspect ("aBean" in this case) can of course be configured and dependency injected just
like any other Spring bean.
6.3.2. Declaring a pointcut

A named pointcut can be declared inside an <aop:config> element, enabling the pointcut definition to be shared
across several aspects and advisors.

A pointcut representing the execution of any business service in the service layer could be defined as follows:

<aop: confi g>

Spring Framework (2.5.6) 145

Aspect Oriented Programming with Spring

<aop: poi ntcut i d="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

</ aop: confi g>

Note that the pointcut expression itself is using the same AspectJ pointcut expression language as described in
Section 6.2, “ @AspectJ support”. If you are using the schema based declaration style with Java 5, you can refer
to named pointcuts defined in types (@A spects) within the pointcut expression, but this feature is not available
on JDK 1.4 and below (it relies on the Java 5 specific AspectJ reflection APIs). On JDK 1.5 therefore, another
way of defining the above pointcut would be;

<aop: confi g>

<aop: poi ntcut i d="busi nessService"
expressi on="com xyz. myapp. Syst emAr chi t ect ur e. busi nessServi ce()"/>

</ aop: confi g>

Assuming you have a Syst emAr chi t ect ur e aspect as described in Section 6.2.3.3, “ Sharing common pointcut
definitions’.

Declaring a pointcut inside an aspect is very similar to declaring atop-level pointcut:

<aop: confi g>
<aop: aspect id="nyAspect" ref="aBean">

<aop: poi ntcut i d="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

</ aop: aspect >

</ aop: confi g>

Much the same way in an @Aspect] aspect, pointcuts declared using the schema based definition style may
collect join point context. For example, the following pointcut collects the 'this object as the join point context
and passesit to advice:
<aop: confi g>
<aop: aspect id="nyAspect" ref="aBean">
<aop: poi ntcut i d="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..)) &anp; &np; this(service)"/>
<aop: bef ore poi ntcut-ref="busi nessServi ce" nethod="nonitor"/>
</ aop: aspect >

</ aop: confi g>

The advice must be declared to receive the collected join point context by including parameters of the matching
names.

public void nonitor(Object service) {

}

When combining pointcut sub-expressions, '& &' is awkward within an XML document, and so the keywords

Spring Framework (2.5.6) 146

Aspect Oriented Programming with Spring

‘and', 'or' and 'not' can be used in place of '&&", '|| and '!" respectively. For example, the previous pointcut may
be better written as:
<aop: confi g>
<aop: aspect id="nyAspect" ref="aBean">
<aop: poi ntcut id="busi nessService"
expressi on="execution(* com xyz. nyapp.service.*.*(..)) and this(service)"/>
<aop: bef ore poi ntcut -ref="busi nessServi ce" nethod="nonitor"/>
</ aop: aspect >

</ aop: confi g>

Note that pointcuts defined in this way are referred to by their XML id and cannot be used as named pointcuts
to form composite pointcuts. The named pointcut support in the schema based definition style is thus more
limited than that offered by the @A spectJ style.

6.3.3. Declaring advice

The same five advice kinds are supported as for the @A spectJ style, and they have exactly the same semantics.

6.3.3.1. Before advice

Before advice runs before a matched method execution. It is declared inside an <aop: aspect > using the
<aop:before> element.

<aop: aspect i d="beforeExanpl e" ref="aBean">
<aop: before

poi nt cut - r ef =" dat aAccessOper ati on"
met hod="doAccessCheck"/ >

</ aop: aspect >

Here dat aAccessQperation is the id of a pointcut defined at the top (<aop: confi g>) level. To define the
pointcut inline instead, replace the poi nt cut - ref attribute with apoi nt cut attribute:

<aop: aspect i d="beforeExanpl e" ref="aBean">

<aop: before
poi nt cut ="execution(* com xyz. nyapp.dao. *.*(..))"
nmet hod="doAccessCheck" />

</ aop: aspect >

As we noted in the discussion of the @Aspect style, using named pointcuts can significantly improve the
readability of your code.

The method attribute identifies a method (doAccessCheck) that provides the body of the advice. This method
must be defined for the bean referenced by the aspect element containing the advice. Before a data access
operation is executed (a method execution join point matched by the pointcut expression), the
"doAccessCheck™" method on the aspect bean will be invoked.

Spring Framework (2.5.6) 147

Aspect Oriented Programming with Spring

6.3.3.2. After returning advice

After returning advice runs when a matched method execution completes normally. It is declared inside an
<aop: aspect > in the same way as before advice. For example:
<aop: aspect id="afterReturni ngExanpl e" ref="aBean">
<aop: after-returning

poi nt cut - r ef =" dat aAccessOper ati on"
met hod="doAccessCheck"/ >

</ aop: aspect >

Just as in the @AspectJ style, it is possible to get hold of the return value within the advice body. Use the
returning attribute to specify the name of the parameter to which the return value should be passed:
<aop: aspect id="afterReturni ngxanpl e" ref="aBean">
<aop: after-returning
poi nt cut - ref =" dat aAccessOper ati on”

returning="retVal"
nmet hod="doAccessCheck"/ >

</ aop: aspect >

The doAccessCheck method must declare a parameter named r et Val . The type of this parameter constrains
matching in the same way as described for @AfterReturning. For example, the method signature may be
declared as:

public void doAccessCheck(Object retVval) {...

6.3.3.3. After throwing advice

After throwing advice executes when a matched method execution exits by throwing an exception. It is
declared inside an <aop: aspect > using the after-throwing element:
<aop: aspect id="after Throw ngExanpl e" ref="aBean">
<aop: after-throw ng

poi nt cut - r ef =" dat aAccessOper ati on”
nmet hod="doRecover yActi ons"/ >

</ aop: aspect >

Just as in the @Aspectd style, it is possible to get hold of the thrown exception within the advice body. Use the
throwing attribute to specify the name of the parameter to which the exception should be passed:
<aop: aspect id="after Throw ngExanpl e" ref="aBean">
<aop: after-throw ng
poi nt cut - ref =" dat aAccessOper ati on”

t hr owi ng="dat aAccessEx"
net hod="doRecover yActi ons"/ >

</ aop: aspect >

Spring Framework (2.5.6) 148

Aspect Oriented Programming with Spring

The doRecoveryActions method must declare a parameter named dat aAccessEx. The type of this parameter
constrains matching in the same way as described for @AfterThrowing. For example, the method signature
may be declared as:

public void doRecoveryActi ons(Dat aAccessExcepti on dat aAccessEx) {...

6.3.3.4. After (finally) advice

After (finally) advice runs however a matched method execution exits. It is declared using the af t er element:

<aop: aspect id="afterFinallyExanpl e" ref="aBean">

<aop: after
poi nt cut - ref =" dat aAccessOper ati on”
nmet hod="doRel easelLock"/ >

</ aop: aspect >

6.3.3.5. Around advice

The final kind of advice is around advice. Around advice runs "around" a matched method execution. It has the
opportunity to do work both before and after the method executes, and to determine when, how, and even if, the
method actually gets to execute at all. Around advice is often used if you need to share state before and after a
method execution in a thread-safe manner (starting and stopping a timer for example). Always use the least
powerful form of advice that meets your requirements; don't use around advice if simple before advice would
do.

Around advice is declared using the aop: ar ound element. The first parameter of the advice method must be of
type Proceedi ngJoi nPoi nt . Within the body of the advice, calling proceed() on the Proceedi ngJoi nPoi nt

causes the underlying method to execute. The pr oceed method may also be calling passing in an Obj ect[] - the
valuesin the array will be used as the arguments to the method execution when it proceeds. See Section 6.2.4.5,
“Around advice” for notes on calling proceed with an tbj ect[] .

<aop: aspect id="aroundExanpl e" ref="aBean">
<aop: ar ound

poi nt cut - ref =" busi nessServi ce"
net hod="doBasi cProfiling"/>

</ aop: aspect >

The implementation of the doBasi cProfi | i ng advice would be exactly the same as in the @Aspect] example
(minus the annotation of course):

public Object doBasicProfiling(Proceedingdoi nPoint pjp) throws Throwable {
/'l start stopwatch
oj ect retVal = pjp.proceed();
/'l stop stopwatch
return retVal

6.3.3.6. Advice parameters

The schema based declaration style supports fully typed advice in the same way as described for the @A spectJ

Spring Framework (2.5.6) 149

Aspect Oriented Programming with Spring

support - by matching pointcut parameters by name against advice method parameters. See Section 6.2.4.6,
“Advice parameters’ for details. If you wish to explicitly specify argument names for the advice methods (not
relying on the detection strategies previously described) then this is done using the ar g- nanes attribute of the
advice element, which is treated in the same manner to the "argNames" attribute in an advice annotation as
described in Section 6.2.4.6.3, “ Determining argument names”. For example:

<aop: before
poi nt cut ="com xyz. | i b. Poi nt cuts. anyPubl i cMet hod() and @nnot ati on(auditable)"
met hod="audi t "
ar g- nanmes="audi t abl e"/ >

The ar g- nares attribute accepts a comma-delimited list of parameter names.

Find below a dlightly more involved example of the XSD-based approach that illustrates some around advice
used in conjunction with a number of strongly typed parameters.

package X.y.service;

public interface FooService {

Foo get Foo(String fooName, int age);
}

public cl ass Defaul t FooService inplenents FooService {

public Foo getFoo(String name, int age) {
return new Foo(nane, age);
}

Next up is the aspect. Notice the fact that the profile(..) method accepts a number of strongly-typed
parameters, the first of which happens to be the join point used to proceed with the method call: the presence of
this parameter isan indication that the profil e(..) isto beused asar ound advice:

package x.y;

i nport org. aspectj .| ang. Proceedi ngJoi nPoi nt;
i nport org.springfranework. util.StopWatch;

public class SinpleProfiler {

public Object profile(Proceedi ngJoinPoint call, String nane, int age) throws Throwable {
St opWat ch cl ock = new St opWat ch(
"Profiling for '" + nane + "' and '" + age + "'");
try {

clock.start(call.toShortString());
return call.proceed();
} finally {
cl ock. stop();
System out. println(clock.prettyPrint());

Finaly, here is the XML configuration that is required to effect the execution of the above advice for a
particular join point:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: aop="http://ww. spri ngframewor k. or g/ schena/ aop"

xsi : schemalLocat i on="
http://ww. springfranmework. org/ schenma/ beans http://ww. spri ngfranmework. or g/ schenma/ beans/ spri ng- beans- 2. 5. xsd
ht t p: // ww. spri ngf ranewor k. or g/ schena/ aop http://ww. spri ngfranework. or g/ schena/ aop/ spri ng- aop- 2. 5. xsd" >

<I-- this is the object that will be proxied by Spring's AOP infrastructure -->
<bean i d="fooService" class="x.y.service. Defaul t FooService"/>

Spring Framework (2.5.6) 150

Aspect Oriented Programming with Spring

<l-- this is the actual advice itself -->
<bean id="profiler" class="x.y.SinpleProfiler"/>

<aop: confi g>
<aop: aspect ref="profiler">

<aop: poi ntcut id="t heExecuti onOf SoneFooSer vi ceMet hod"
expressi on="execution(* x.y.service. FooService. getFoo(String,int))
and args(nane, age)"/>

<aop: around poi ntcut -ref="t heExecuti onOf SoneFooSer vi ceMet hod"
nmet hod="profile"/>

</ aop: aspect >
</ aop: confi g>

</ beans>

If we had the following driver script, we would get output something like this on standard outpui:

i nport org. springfranework. beans. f act ory. BeanFact ory;
i mport org.springframework. cont ext. support. C assPat hXm Appl i cati onCont ext ;
i nport X.y.service. FooService

public final class Boot {

public static void main(final String[] args) throws Exception {
BeanFactory ctx = new Cl assPat hXm Applicati onContext ("x/y/plain.xm");
FooService foo = (FooService) ctx.getBean("fooService");
f 0o. get Foo(" Pengo", 12);

}

StopWatch 'Profiling for 'Pengo’ and '12'': running time (mllis) =0

00000 ? execution(getFoo)

6.3.3.7. Advice ordering

When multiple advice needs to execute at the same join point (executing method) the ordering rules are as
described in Section 6.2.4.7, “Advice ordering”. The precedence between aspects is determined by either
adding the o der annotation to the bean backing the aspect or by having the bean implement the O der ed
interface.

6.3.4. Introductions

Introductions (known as inter-type declarations in AspectJ) enable an aspect to declare that advised objects
implement a given interface, and to provide an implementation of that interface on behalf of those objects.

An introduction is made using the aop: decl ar e- par ent s element inside an aop: aspect Thiselement isused to
declare that matching types have a new parent (hence the name). For example, given an interface
UsageTracked, and an implementation of that interface Def aul t UsageTr acked, the following aspect declares
that all implementors of service interfaces also implement the UsageTr acked interface. (In order to expose
statistics viaJM X for example.)

<aop: aspect id="usageTrackerAspect" ref="usageTracki ng">

<aop: decl are-parents
t ypes- mat chi ng="com xzy. myapp. servi ce. *+"
i mpl enent -i nterface="com xyz. myapp. servi ce. tracki ng. UsageTr acked"
def aul t -i npl =" com xyz. nyapp. servi ce. tracki ng. Def aul t UsageTr acked"/ >

Spring Framework (2.5.6) 151

Aspect Oriented Programming with Spring

<aop: before
poi nt cut =" com xyz. nyapp. Syst emAr chi t ect ur e. busi nessSer vi ce()
and thi s(usageTracked)"
nmet hod="r ecor dUsage"/ >

</ aop: aspect >

The class backing the usageTr acki ng bean would contain the method:

public void recordUsage(UsageTracked usageTracked) {
usageTracked. i ncrement UseCount () ;
}

The interface to be implemented is determined by inplenent-interface atribute. The value of the
t ypes- mat chi ng attribute is an Aspectd type pattern :- any bean of a matching type will implement the
UsageTr acked interface. Note that in the before advice of the above example, service beans can be directly used
as implementations of the UsageTr acked interface. If accessing a bean programmatically you would write the
following:

UsageTr acked usageTracked = (UsageTracked) context.getBean("myService");

6.3.5. Aspect instantiation models

The only supported instantiation model for schema-defined aspects is the singleton model. Other instantiation
models may be supported in future releases.

6.3.6. Advisors

The concept of "advisors' is brought forward from the AOP support defined in Spring 1.2 and does not have a
direct equivalent in AspectJ. An advisor is like a small self-contained aspect that has a single piece of advice.
The advice itself is represented by a bean, and must implement one of the advice interfaces described in
Section 7.3.2, “Advice typesin Spring”. Advisors can take advantage of AspectJ pointcut expressions though.

Spring 2.0 supports the advisor concept with the <aop: advi sor > element. Y ou will most commonly see it used
in conjunction with transactional advice, which also has its own namespace support in Spring 2.0. Here's how it
looks:

<aop: confi g>

<aop: poi ntcut id="busi nessService"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

<aop: advi sor
poi nt cut - r ef =" busi nessSer vi ce"
advi ce-ref ="t x-advi ce"/ >

</ aop: confi g>

<t x: advi ce id="tx-advice">
<tx:attributes>
<t x: net hod nane="*" propagati on="REQUI RED"/ >
</tx:attributes>
</ tx: advi ce>

As well as the poi nt cut -ref attribute used in the above example, you can also use the poi nt cut attribute to
define a pointcut expression inline.

Spring Framework (2.5.6) 152

Aspect Oriented Programming with Spring

To define the precedence of an advisor so that the advice can participate in ordering, use the or der attribute to
define the O der ed value of the advisor.

6.3.7. Example

Let's see how the concurrent locking failure retry example from Section 6.2.7, “Example” ooks when rewritten
using the schema support.

The execution of business services can sometimes fail due to concurrency issues (for example, deadlock loser).
If the operation is retried, it is quite likely it will succeed next time round. For business services where it is
appropriate to retry in such conditions (idempotent operations that don't need to go back to the user for conflict
resolution), wed like to transparently retry the operation to avoid the client seeing a
Pessi mi sti cLocki ngFai | ur eExcepti on. Thisis arequirement that clearly cuts across multiple services in the
service layer, and henceisideal for implementing via an aspect.

Because we want to retry the operation, we'll need to use around advice so that we can call proceed multiple
times. Here's how the basic aspect implementation looks (it's just a regular Java class using the schema
support):

public class Concurrent OperationExecutor inplenments Ordered {
private static final int DEFAULT _MAX RETRIES = 2;

private int maxRetries = DEFAULT_MAX RETRI ES;
private int order = 1;

public void set MaxRetries(int nmaxRetries) {
this. maxRetries = maxRetries;

}

public int getOrder() {
return this.order;
}

public void setOrder(int order) {
this.order = order;

}

public Qoject doConcurrent Qperati on(Proceedi ngJoi nPoi nt pjp) throws Throwabl e {
int numAttenpts = O;
Pessi m sti cLocki ngFai | ureExcepti on | ockFai | ur eExcepti on;
do {
numAt t enpt s++;

try {
return pjp.proceed();

cat ch(Pessi m sti cLocki ngFai | ureException ex) {
| ockFai | ureException = ex;
}
}

whil e(numAttenpts <= this. maxRetries);
t hrow | ockFai | ur eExcepti on;

Note that the aspect implements the o der ed interface so we can set the precedence of the aspect higher than
the transaction advice (we want a fresh transaction each time we retry). The maxRet ri es and or der properties
will both be configured by Spring. The main action happens in the doConcurrent Oper ati on around advice
method. We try to proceed, and if we fail with a Pessi ni sti cLocki ngFai | ur eExcepti on we simply try again
unless we have exhausted all of our retry attempts.

This classisidentical to the one used in the @Aspect] example, but with the annotations removed.

Spring Framework (2.5.6) 153

Aspect Oriented Programming with Spring

The corresponding Spring configuration is:

<aop: confi g>
<aop: aspect id="concurrentOperationRetry" ref="concurrentOperationExecutor">

<aop: poi ntcut id="i denpotent Operation"
expressi on="execution(* com xyz. myapp.service.*.*(..))"/>

<aop: ar ound
poi nt cut -ref ="i denpot ent Oper ati on"
nmet hod="doConcurrent Operati on"/>

</ aop: aspect >
</ aop: confi g>

<bean i d="concurrent Qper ati onExecut or"
cl ass="com xyz. nyapp. servi ce. i npl . Concurr ent Oper ati onExecut or" >
<property name="naxRetries" val ue="3"/>
<property nane="order" val ue="100"/>
</ bean>

Notice that for the time being we assume that all business services are idempotent. If thisis not the case we can
refine the aspect so that it only retries genuinely idempotent operations, by introducing an | denpot ent
annotation:

@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)
public @nterface |denpotent {
/'l marker annotation

}

and using the annotation to annotate the implementation of service operations. The change to the aspect to retry
only idempotent operations simply involves refining the pointcut expression so that only @ denpotent
operations match:

<aop: poi ntcut id="idenpotent Operation"
expressi on="execution(* com xyz. nmyapp.service.*.*(..)) and
@nnot ati on(com xyz. myapp. servi ce. | denpotent)"/>

6.4. Choosing which AOP declaration style to use

Once you have decided that an aspect is the best approach for implementing a given requirement, how do you
decide between using Spring AOP or Aspect], and between the Aspect language (code) style, @Aspect]
annotation style, or the Spring XML style? These decisions are influenced by a number of factors including
application requirements, development tools, and team familiarity with AOP.

6.4.1. Spring AOP or full AspectJ?

Use the simplest thing that can work. Spring AOP is simpler than using full AspectJ as there is no requirement
to introduce the Aspectd compiler / weaver into your development and build processes. If you only need to
advise the execution of operations on Spring beans, then Spring AOP is the right choice. If you need to advise
objects not managed by the Spring container (such as domain objects typicaly), then you will need to use
Aspectd. You will also need to use Aspect] if you wish to advise join points other than simple method
executions (for example, field get or set join points, and so on).

When using AspectJ, you have the choice of the Aspectd language syntax (also known as the "code styl€") or
the @A spectJ annotation style. Clearly, if you are not using Java 5+ then the choice has been made for you...

Spring Framework (2.5.6) 154

Aspect Oriented Programming with Spring

use the code style. If aspects play alarge role in your design, and you are able to use the AspectJ Development
Tools (AJDT) plugin for Eclipse, then the Aspect] language syntax is the preferred option: it is cleaner and
simpler because the language was purposefully designed for writing aspects. If you are not using Eclipse, or
have only a few aspects that do not play a major role in your application, then you may want to consider using
the @AspectJ style and sticking with a regular Java compilation in your IDE, and adding an aspect weaving
phase to your build script.

6.4.2. @Aspectd or XML for Spring AOP?

If you have chosen to use Spring AOP, then you have a choice of @Aspectd or XML style. Clearly if you are
not running on Java 5+, then the XML style is the appropriate choice; for Java 5 projects there are various
tradeoffs to consider.

The XML style will be most familiar to existing Spring users. It can be used with any JDK level (referring to
named pointcuts from within pointcut expressions does still require Java 5+ though) and is backed by genuine
POJOs. When using AOP as atool to configure enterprise services then XML can be a good choice (a good test
is whether you consider the pointcut expression to be a part of your configuration you might want to change
independently). With the XML style arguably it is clearer from your configuration what aspects are present in
the system.

The XML style has two disadvantages. Firstly it does not fully encapsulate the implementation of the
requirement it addresses in a single place. The DRY principle says that there should be a single, unambiguous,
authoritative representation of any piece of knowledge within a system. When using the XML style, the
knowledge of how a requirement is implemented is split across the declaration of the backing bean class, and
the XML in the configuration file. When using the @AspectJ style there is a single module - the aspect - in
which this information is encapsulated. Secondly, the XML style is dightly more limited in what it can express
than the @AspectJ style: only the "singleton" aspect instantiation model is supported, and it is not possible to
combine named pointcuts declared in XML. For example, in the @AspectJ style you can write something like:

@Poi nt cut (execution(* get*()))
public void propertyAccess() {}

@Poi nt cut (executi on(org. xyz. Account+ *(..))
public void operationReturni ngAnAccount () {}

@Poi nt cut (propertyAccess() && operati onRet urni ngAnAccount ())
public void account PropertyAccess() {}

In the XML style | can declare the first two pointcuts:

<aop: poi ntcut id="propertyAccess"
expressi on="execution(* get*())"/>

<aop: poi ntcut id="operationReturni ngAnAccount"
expressi on="execution(org. xyz. Account+ *(..))"/>

The downside of the XML approach is that you cannot define the 'account PropertyAccess' pointcut by
combining these definitions.

The @Aspect] style supports additional instantiation models, and richer pointcut composition. It has the
advantage of keeping the aspect as a modular unit. It also has the advantage the @AspectJ aspects can be
understood (and thus consumed) both by Spring AOP and by Aspect] - so if you later decide you need the
capabilities of AspectJ to implement additional requirements then it is very easy to migrate to an AspectJ-based
approach. On balance the Spring team prefer the @A spectJ style whenever you have aspects that do more than
simple "configuration" of enterprise services.

Spring Framework (2.5.6) 155

http://www.eclipse.org/ajdt/
http://www.eclipse.org/ajdt/

Aspect Oriented Programming with Spring

6.5. Mixing aspect types

It is perfectly possible to mix @Aspectd style aspects using the autoproxying support, schema-defined
<aop: aspect > asPects, <aop: advi sor > declared advisors and even proxies and interceptors defined using the
Spring 1.2 style in the same configuration. All of these are implemented using the same underlying support
mechanism and will co-exist without any difficulty.

6.6. Proxying mechanisms

Spring AOP uses either JDK dynamic proxies or CGLIB to create the proxy for a given target object. (JDK
dynamic proxies are preferred whenever you have a choice).

If the target object to be proxied implements at |east one interface then a JDK dynamic proxy will be used. All
of the interfaces implemented by the target type will be proxied. If the target object does not implement any
interfaces then a CGLIB proxy will be created.

If you want to force the use of CGLIB proxying (for example, to proxy every method defined for the target
object, not just those implemented by its interfaces) you can do so. However, there are some issues to consider:

* final methods cannot be advised, as they cannot be overriden.

* You will need the CGLIB 2 binaries on your classpath, whereas dynamic proxies are available with the JDK.
Spring will automatically warn you when it needs CGL 1B and the CGLIB library classes are not found on the

classpath.

« The constructor of your proxied object will be called twice. This is a natural consegquence of the CGLIB
proxy model whereby a subclass is generated for each proxied object. For each proxied instance, two objects
are created: the actual proxied object and an instance of the subclass that implements the advice. This
behavior is not exhibited when using JDK proxies. Usually, calling the constructor of the proxied type twice,
is not an issue, as there are usually only assignments taking place and no real logic is implemented in the
constructor.

To force the use of CGLIB proxies set the value of the proxy-target - cl ass attribute of the <aop: confi g>
element to true:

<aop: config proxy-target-class="true">
<!-- other beans defined here... -->
</ aop: confi g>

To force CGLIB proxying when using the @Aspect] autoproxy support, set the ' proxy-target - cl ass'

attribute of the <aop: aspectj - aut opr oxy> element to t r ue:

<aop: aspect j - aut opr oxy proxy-target-class="true"/>

Note

Multiple <aop: confi g/ > sections are collapsed into a single unified auto-proxy creator at runtime,
which applies the strongest proxy settings that any of the <aop: confi g/ > sections (typically from
different XML bean definition files) specified. This also applies to the <t x: annot ati on-dri ven/ >
and <aop: aspect j - aut opr oxy/ > elements.

Spring Framework (2.5.6) 156

Aspect Oriented Programming with Spring

To be clear: using ‘'proxy-target-class="true"' ON <tx:annotation-driven/>,

<aop: aspect j - aut opr oxy/ > Of <aop: confi g/ > elements will force the use of CGLIB proxies for
all three of them.

6.6.1. Understanding AOP proxies

Spring AOP is proxy-based. It is vitally important that you grasp the semantics of what that last statement

actually means before you write your own aspects or use any of the Spring AOP-based aspects supplied with
the Spring Framework.

Consider first the scenario where you have a plain-vanilla, un-proxied, nothing-special-about-it, straight object
reference, asillustrated by the following code snippet.

public class SinplePojo inplenents Pojo {

public void foo() {
/1 this next method invocation is a direct call on the "this' reference
this.bar();

}

public void bar() {
/1 sone logic...

}
}

If you invoke a method on an object reference, the method is invoked directly on that object reference, as can
be seen below.

Calling code pojo.foo ()
&

Flain Dbjec:t I—D foo() on the cbject

public class Main {

public static void main(String[] args) {
Poj o pojo = new Si npl ePoj o();

// this is a direct nethod call on the 'pojo' reference
poj o. foo();

Things change slightly when the reference that client code has is a proxy. Consider the following diagram and
code snippet.

Spring Framework (2.5.6) 157

Aspect Oriented Programming with Spring

pojo. foo ()
feo() on the proxy

then foo() on the object

Flain Object

public class Main {
public static void main(String[] args) {
ProxyFactory factory = new ProxyFactory(new Si npl ePojo());
factory. addl nterface(Poj o. cl ass);
factory. addAdvi ce(new RetryAdvice());
Poj o pojo = (Pojo) factory.getProxy();

/'l this is a nethod call on the proxy!
poj o. foo();

The key thing to understand here is that the client code inside the mai n(. .) of the mai n class has a reference to
the proxy. This means that method calls on that object reference will be calls on the proxy, and as such the
proxy will be able to delegate to al of the interceptors (advice) that are relevant to that particular method call.
However, once the call has finally reached the target object, the Si npl ePoj o reference in this case, any method
calls that it may make on itself, such asthis. bar() or this.foo(), are going to be invoked against the t hi s
reference, and not the proxy. This has important implications. It means that self-invocation is not going to result
in the advice associated with a method invocation getting a chance to execute.

Okay, so what is to be done about this? The best approach (the term best is used loosely here) is to refactor
your code such that the self-invocation does not happen. For sure, this does entail some work on your part, but
it is the best, least-invasive approach. The next approach is absolutely horrendous, and | am almost reticent to
point it out precisely because it is so horrendous. You can (choke!) totaly tie the logic within your class to
Spring AOP by doing this:
public class SinplePojo inplenments Pojo {

public void foo() {

/1 this works, but... gah!
((Poj o) AopContext.currentProxy()).bar();

public void bar() {
/1 sone logic...
}

Thistotally couples your code to Spring AOP, and it makes the class itself aware of the fact that it is being used
in an AOP context, which flies in the face of AOP. It aso requires some additional configuration when the
proxy is being created:

public class Main {

Spring Framework (2.5.6) 158

Aspect Oriented Programming with Spring

public static void main(String[] args) {

ProxyFactory factory = new ProxyFact ory(new Si npl ePojo());
factory. adddl nt erface(Poj o. cl ass);

factory. addAdvi ce(new RetryAdvice());

factory. set ExposeProxy(true);

Poj o pojo = (Pojo) factory.getProxy();

// this is a nmethod call on the proxy!
poj o. foo();

Finally, it must be noted that Aspect does not have this self-invocation issue because it is not a proxy-based
AOP framework.

6.7. Programmatic creation of @AspectJ Proxies

In addition to declaring aspects in your configuration using either <aop: conf i g> Or <aop: aspect j - aut opr oxy>,
it is aso possible programmatically to create proxies that advise target objects. For the full details of Spring's
AOP AP, see the next chapter. Here we want to focus on the ability to automatically create proxies using

@A spect] aspects.

The class org. spri ngf ramewor k. aop. aspect j . annot at i on. Aspect JProxyFact ory can be used to create a
proxy for a target object that is advised by one or more @A spect] aspects. Basic usage for this class is very
simple, asillustrated below. See the Javadocs for full information.

I/l create a factory that can generate a proxy for the given target object
Aspect JProxyFactory factory = new Aspect JProxyFact ory(target Object);

// add an aspect, the class nust be an @\spectJ aspect
/1 you can call this as nmany tines as you need with different aspects
factory. addAspect (Securit yManager. cl ass) ;

// you can al so add existing aspect instances, the type of the object supplied nust be an @\spectJ aspect
factory. addAspect (usageTr acker);

/'l now get the proxy object...
M/l nter faceType proxy = factory. get Proxy();

6.8. Using AspectJ with Spring applications

Everything we've covered so far in this chapter is pure Spring AOP. In this section, we're going to look at how
you can use the AspectJ compiler/weaver instead of, or in addition to, Spring AOP if your needs go beyond the
facilities offered by Spring AOP alone.

Spring ships with a small Aspectd aspect library, which is available standalone in your distribution as
spring-aspects.jar; you'll need to add this to your classpath in order to use the aspects in it. Section 6.8.1,
“Using AspectJ to dependency inject domain objects with Spring” and Section 6.8.2, “Other Spring aspects for
AspectJ’ discuss the content of this library and how you can use it. Section 6.8.3, “ Configuring AspectJ aspects
using Spring 10C” discusses how to dependency inject Aspect] aspects that are woven using the Aspect]
compiler. Finaly, Section 6.8.4, “Load-time weaving with AspectJ in the Spring Framework” provides an
introduction to load-time weaving for Spring applications using AspectJ.

6.8.1. Using AspectJ to dependency inject domain objects with Spring

Spring Framework (2.5.6) 159

Aspect Oriented Programming with Spring

The Spring container instantiates and configures beans defined in your application context. It is also possible to
ask a bean factory to configure a pre-existing object given the name of a bean definition containing the
configuration to be applied. The spri ng- aspects. jar contains an annotation-driven aspect that exploits this
capability to allow dependency injection of any object. The support is intended to be used for objects created
outside of the control of any container. Domain objects often fall into this category because they are often
created programmatically using the new operator, or by an ORM tool as aresult of a database query.

The @onf i gur abl e annotation marks a class as eligible for Spring-driven configuration. In the simplest case it
can be used just as a marker annotation:

package com xyz. nyapp. domai n
i mport org.springframework. beans. factory. annot ati on. Confi gur abl e;

@onf i gurabl e

public class Account {
...

}

When used as a marker interface in this way, Spring will configure new instances of the annotated type
(Account in this case) using a prototype-scoped bean definition with the same name as the fully-qualified type
name (com xyz. nyapp. domai n. Account). Since the default name for a bean is the fully-qualified name of its
type, a convenient way to declare the prototype definition is simply to omit thei d attribute:

<bean cl ass="com xyz. nyapp. donai n. Account" scope="pr ot ot ype">
<property nanme="fundsTransferService" ref="fundsTransferService"/>
</ bean>

If you want to explicitly specify the name of the prototype bean definition to use, you can do so directly in the
annotation:

package com xyz. nyapp. domai n
i nport org.springfranework. beans. f act ory. annot ati on. Confi gur abl e;

@Conf i gur abl e("account ™)

public class Account {
...

}

Spring will now look for a bean definition named "account " and use that as the definition to configure new
Account instances.

You can also use autowiring to avoid having to specify a prototype-scoped bean definition at all. To have
Spring apply autowiring use the 'autowire' property of the @oonfigurable annotation: specify either
@onf i gur abl e(aut owi r e=Aut owi r e. BY_TYPE) or @conf i gur abl e(aut owi r e=Aut owi r e. BY_NAME for
autowiring by type or by name respectively. As an aternative, as of Spring 2.5 it is preferable to specify
explicit, annotation-driven dependency injection for your @onfi gurabl e beans by using @ut owi red and
@resour ce at thefield or method level (see Section 3.11, “ Annotation-based configuration” for further details).

Finally you can enable Spring dependency checking for the object references in the newly created and
configured object by using the dependencyCheck attribute (for example:
@@onf i gur abl e(aut owi r e=Aut owi r e. BY_NAME, dependencyCheck=true)). If this attribute is set to true, then
Spring will validate after configuration that all properties (which are not primitives or collections) have been
Set.

Using the annotation on its own does nothing of course. It is the Annot ati onBeanConfi gur er Aspect in
spring-aspects. jar that acts on the presence of the annotation. In essence the aspect says "after returning

Spring Framework (2.5.6) 160

Aspect Oriented Programming with Spring

from the initialization of a new object of a type annotated with @onfi gur abl e, configure the newly created
object using Spring in accordance with the properties of the annotation”. In this context, initialization refers to
newly instantiated objects (e.g., objects instantiated with the 'new operator) as well asto Seri al i zabl e objects
that are undergoing deserialization (e.g., viareadResolve()).

Note
e

One of the key phrases in the above paragraph is 'in essence’. For most cases, the exact semantics
of 'after returning from the initialization of a new object’ will be fine... in this context, ‘after
initialization' means that the dependencies will be injected after the object has been constructed -
this means that the dependencies will not be available for use in the constructor bodies of the class.
If you want the dependencies to be injected before the constructor bodies execute, and thus be
available for use in the body of the constructors, then you need to define this on the @onf i gur abl e
declaration like so:

@onf i gur abl e(preConstructi on=true)

You can find out more information about the language semantics of the various pointcut types in
AspectJin this appendix of the AspectJ Programming Guide.

For this to work the annotated types must be woven with the AspectJ weaver - you can either use a build-time
Ant or Maven task to do this (see for example the AspectJ Development Environment Guide) or load-time
weaving (see Section 6.8.4, “Load-time weaving with Aspectd in the Spring Framework™). The
Annot at i onBeanConf i gur er Aspect itself needs configuring by Spring (in order to obtain a reference to the
bean factory that is to be used to configure new objects). The Spring cont ext namespace defines a convenient
tag for doing this: just include the following in your application context configuration:

<cont ext : spri ng- confi gured/ >

If you are using the DTD instead of schema, the equivalent definitioniis:

<bean
cl ass="org. spri ngframewor k. beans. factory. aspectj . Annot ati onBeanConf i gur er Aspect"
factory- met hod="aspect &0f "/ >

Instances of @onfi gurabl e objects created before the aspect has been configured will result in a warning
being issued to the log and no configuration of the object taking place. An example might be a bean in the
Spring configuration that creates domain objects when it is initialized by Spring. In this case you can use the
"depends-on" bean attribute to manually specify that the bean depends on the configuration aspect.

<bean i d="nyService"
cl ass="com xzy. nyapp. servi ce. MyServi ce"
depends- on="or g. spri ngf ramewor k. beans. f act ory. aspectj . Annot at i onBeanConfi gur er Aspect ">

<l-- .. -->

</ bean>

6.8.1.1. Unit testing @onfi gur abl e Objects

One of the goals of the @onfi gur abl e support is to enable independent unit testing of domain objects without
the difficulties associated with hard-coded lookups. If @onfi gurabl e types have not been woven by AspectJ
then the annotation has no affect during unit testing, and you can simply set mock or stub property referencesin
the object under test and proceed as normal. If @onfi gur abl e types have been woven by AspectJ then you can

Spring Framework (2.5.6) 161

http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://www.eclipse.org/aspectj/doc/next/progguide/semantics-joinPoints.html
http://www.eclipse.org/aspectj/doc/next/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/devguide/antTasks.html

Aspect Oriented Programming with Spring

dtill unit test outside of the container as normal, but you will see a warning message each time that you
construct an @onf i gur abl e object indicating that it has not been configured by Spring.

6.8.1.2. Working with multiple application contexts

The Annot at i onBeanConf i gur er Aspect Used to implement the @onf i gur abl e support is an AspectJ singleton
aspect. The scope of a singleton aspect is the same as the scope of st ati ¢ members, that is to say there is one
aspect instance per classloader that defines the type. This meansthat if you define multiple application contexts
within the same classoader hierarchy you need to consider where to define the
<cont ext : spri ng- conf i gur ed/ > bean and where to place spri ng- aspect s. j ar on the classpath.

Consider a typical Spring web-app configuration with a shared parent application context defining common
business services and everything needed to support them, and one child application context per servlet
containing definitions particular to that servlet. All of these contexts will co-exist within the same classloader
hierarchy, and so the Annot at i onBeanConf i gur er Aspect can only hold a reference to one of them. In this case
we recommend defining the <cont ext : spri ng- confi gur ed/ > bean in the shared (parent) application context:
this defines the services that you are likely to want to inject into domain objects. A consequence is that you
cannot configure domain objects with references to beans defined in the child (servlet-specific) contexts using
the @Configurable mechanism (probably not something you want to do anyway!).

When deploying multiple web-apps within the same container, ensure that each web-application loads the types
in spring-aspects.jar using its own classoader (for example, by placing spring-aspects.jar in
"WEB- I NF/lib'). If spring-aspects.jar isonly added to the container wide classpath (and hence loaded by
the shared parent classloader), all web applications will share the same aspect instance which is probably not
what you want.

6.8.2. Other Spring aspects for AspectJ

In addition to the @onf i gur abl e aspect, spri ng- aspects. j ar contains an AspectJ aspect that can be used to
drive Spring's transaction management for types and methods annotated with the @r ansacti onal annotation.
Thisis primarily intended for users who want to use the Spring Framework's transaction support outside of the
Spring container.

The aspect that interprets @r ansact i onal annotations is the Annot at i onTransact i onAspect . When using this
aspect, you must annotate the implementation class (and/or methods within that class), not the interface (if any)
that the class implements. AspectJ follows Java's rule that annotations on interfaces are not inherited.

A @ransactional annotation on a class specifies the default transaction semantics for the execution of any
public operation in the class.

A @ransactional annotation on a method within the class overrides the default transaction semantics given
by the class annotation (if present). Methods with public, protected, and default visibility may al be
annotated. Annotating pr ot ect ed and default visibility methods directly is the only way to get transaction
demarcation for the execution of such methods.

For Aspectd programmers that want to use the Spring configuration and transaction management support but
don't want to (or cannot) use annotations, spri ng- aspects. j ar alS0 contains abst ract aspects you can extend
to provide your own pointcut definitions. See the sources for the Abstract BeanConfi gurer Aspect and
Abst ract Tr ansact i onAspect aspects for more information. As an example, the following excerpt shows how
you could write an aspect to configure all instances of objects defined in the domain model using prototype
bean definitions that match the fully-qualified class names:

publ i c aspect Donmi nObj ect Confi guration extends Abstract BeanConfi gurerAspect {

publ i ¢ Domai nObj ect Configuration() {

Spring Framework (2.5.6) 162

Aspect Oriented Programming with Spring

set BeanW ri ngl nf oResol ver (new Cl assNaneBeanW ri ngl nf oResol ver());

}

// the creation of a new bean (any object in the domain nodel)
prot ect ed pointcut beanCreati on(Object beanl nstance)
initialization(new..)) &&
Syst emAr chi t ect ure. i nDonai nModel () &&
t hi s(beanl nst ance) ;

6.8.3. Configuring AspectJ aspects using Spring loC

When using AspectJ aspects with Spring applications, it is natural to both want and expect to be able to
configure such aspects using Spring. The AspectJ runtime itself is responsible for aspect creation, and the
means of configuring the AspectJ created aspects via Spring depends on the AspectJ instantiation model (the
'per - xxx' clause) used by the aspect.

The majority of Aspect] aspects are singleton aspects. Configuration of these aspects is very easy: simply
create a bean definition referencing the aspect type as normal, and include the bean attribute
" factory-net hod="aspect 0" . This ensures that Spring obtains the aspect instance by asking AspectJ for it
rather than trying to create an instance itself. For example:

<bean id="profiler" class="comxyz.profiler.Profiler"
factory-net hod="aspect O " >
<property name="profilingStrategy" ref="janonProfilingStrategy"/>
</ bean>

Non-singleton aspects are harder to configure: however it is possible to do so by creating prototype bean
definitions and using the @onfi gur abl e support from spri ng- aspects. j ar to configure the aspect instances
once they have bean created by the AspectJ runtime.

If you have some @Aspect] aspects that you want to weave with Aspectd (for example, using load-time
weaving for domain model types) and other @A spectJ aspects that you want to use with Spring AOP, and these
aspects are all configured using Spring, then you will need to tell the Spring AOP @A spectJ autoproxying
support which exact subset of the @Aspect] aspects defined in the configuration should be used for
autoproxying. You can do this by wusing one or more <include/> €lements inside the
<aop: aspect j - aut opr oxy/ > declaration. Each <i ncl ude/ > element specifies a name pattern, and only beans
with names matched by at least one of the patterns will be used for Spring AOP autoproxy configuration:

<aop: aspect j - aut opr oxy>
<aop: i ncl ude nane="t hi sBean"/>
<aop: i ncl ude nane="t hat Bean"/>
</ aop: aspectj - aut opr oxy>

Note

Do not be misled by the name of the <aop: aspectj - aut opr oxy/ > element: using it will result in
the creation of Soring AOP proxies. The @AspectJ style of aspect declaration is just being used
here, but the AspectJ runtime is not involved.

6.8.4. Load-time weaving with AspectJ in the Spring Framework

L oad-time weaving (LTW) refers to the process of weaving Aspect] aspects into an application's class files as

Spring Framework (2.5.6) 163

Aspect Oriented Programming with Spring

they are being loaded into the Java virtual machine (JVM). The focus of this section is on configuring and using
LTW in the specific context of the Spring Framework: this section is not an introduction to LTW though. For
full details on the specifics of LTW and configuring LTW with just AspectJ (with Spring not being involved at
all), see the LTW section of the AspectJ Development Environment Guide.

The value-add that the Spring Framework brings to AspectJ LTW is in enabling much finer-grained control
over the weaving process. 'Vanilla' Aspect] LTW is effected using a Java (5+) agent, which is switched on by
specifying a VM argument when starting up a JVM. It is thus a JV M-wide setting, which may be fine in some
situations, but often is a little too coarse. Spring-enabled LTW enables you to switch on LTW on a
per-d assLoader basis, which obviously is more fine-grained and which can make more sense in a
'single-Jv M-multiple-application’ environment (such asisfound in atypical application server environment).

Further, in certain environments, this support enables load-time weaving without making any modifications to
the application server's launch script that will be needed to add -javaagent: path/to/aspectjweaver.jar or (as we
describe later in this section) -javaagent:path/to/spring-agent.jar. Developers ssimply modify one or more files
that form the application context to enable load-time weaving instead of relying on administrators who
typically are in charge of the deployment configuration such as the launch script.

Now that the sales pitch is over, let us first walk through a quick example of Aspectd LTW using Spring,
followed by detailed specifics about elements introduced in the following example. For a complete example,
please see the Petclinic sample application.

6.8.4.1. A first example

Let us assume that you are an application developer who has been tasked with diagnosing the cause of some
performance problems in a system. Rather than break out a profiling tool, what we are going to do is switch on
asimple profiling aspect that will enable us to very quickly get some performance metrics, so that we can then
apply afiner-grained profiling tool to that specific areaimmediately afterwards.

Here is the profiling aspect. Nothing too fancy, just a quick-and-dirty time-based profiler, using the
@A spectJ-style of aspect declaration.

package f oo0;

i mport org. aspectj .| ang. Proceedi ngJoi nPoi nt ;

i nport org. aspectj .| ang. annot ati on. Aspect ;

i mport org.aspectj .| ang.annot ati on. Around;

i nport org. aspectj .| ang. annot ati on. Poi nt cut ;

i nport org.springfranmework. util.StopWatch;

i nport org. springfranework. core. annot ati on. Or der;

@\spect
public class ProfilingAspect {

@A ound(" et hodsToBeProfiled()")
public Object profil e(Proceedi ngJoi nPoint pjp) throws Throwabl e {
St opWat ch sw = new St opWat ch(get Cl ass(). get Si npl eNanme()) ;
try {
sw. start (pj p. getSignature().getNanme());
return pjp.proceed();
} finally {
sw. stop();
Systemout.println(sw prettyPrint());

}

@Poi nt cut ("execution(public * foo..*.*(..))")
public void methodsToBeProfiled(){}

We will also need to create an 'WVETA- | NF/ aop. xmi ' file, to inform the Aspect] weaver that we want to weave

Spring Framework (2.5.6) 164

http://www.eclipse.org/aspectj/doc/released/devguide/ltw.html

Aspect Oriented Programming with Spring

our ProfilingAspect intoour classes. Thisfile convention, namely the presence of afile (or files) on the Java
classpath called ' META- 1 NF/ aop. xni ' is standard AspectJ.

<! DOCTYPE aspectj PUBLIC
"-//AspectJ//DTD// EN' "http://ww. eclipse. org/aspectj/dtd/ aspectj.dtd">
<aspectj >
<weaver >

<I-- only weave classes in our application-specific packages -->
<include within="foo.*"/>

</ weaver >
<aspect s>

<l-- weave in just this aspect -->
<aspect nane="foo. ProfilingAspect"/>

</ aspect s>

</ aspectj >

Now to the Spring-specific portion of the configuration. We need to configure aLoadTi meveaver (all explained
later, just take it on trust for now). This load-time weaver is the essential component responsible for weaving
the aspect configuration in one or more 'META- | NF/ aop. xm ' files into the classes in your application. The good
thing is that it does not require a lot of configuration, as can be seen below (there are some more options that
you can specify, but these are detailed later).

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranmework. or g/ schema/ cont ext "
xsi : schemalLocat i on="
http://ww. spri ngfranmework. org/ schenma/ beans http://ww. springfranework. or g/ schenma/ beans/ spri ng- beans- 2. 5. xsd
htt p: // ww. spri ngf ranewor k. or g/ schenma/ cont ext http://ww. spri ngfranework. or g/ schema/ cont ext/ spri ng- cont ext - 2. 5. x
<I-- a service object; we will be profiling its nethods -->
<bean id="entitl| enment Cal cul ati onServi ce"
cl ass="foo. StubEntitl enment Cal cul ati onServi ce"/>

<l-- this switches on the |oad-tinme weaving -->
<cont ext: | oad-ti ne- weaver/ >

</ beans>

Now that all the required artifacts are in place - the aspect, the 'META-1 NF/ aop. xmi ' file, and the Spring
configuration -, let us create asimple driver class with anei n(..) method to demonstrate the LTW in action.
package foo;
i mport org.springframework. cont ext. support. d assPat hXm Appl i cati onCont ext ;
public final class Main {
public static void main(String[] args) {
Appl i cationContext ctx = new C assPat hXnl Appl i cati onCont ext ("beans. xm ", Main.cl ass);

Entitl enent Cal cul ati onService entitlenentCal cul ati onService
= (EntitlenentCal cul ati onService) ctx.getBean("entitlenmentCal cul ati onService");

/1 the profiling aspect is 'woven' around this method execution
entitlement Cal cul ati onService. cal cul ateEntitlenment();

There is one last thing to do. The introduction to this section did say that one could switch on LTW selectively

Spring Framework (2.5.6) 165

Aspect Oriented Programming with Spring

on aper-c assLoader basis with Spring, and thisis true. However, just for this example, we are going to use a
Java agent (supplied with Spring) to switch on the LTW. Thisis the command line we will use to run the above
Mai n class:

java -javaagent: C:/projects/foo/lib/global/spring-agent.jar foo.Miin
The '-j avaagent ' is a Java 5+ flag for specifying and enabling agents to instrument programs running on the

JVM. The Spring Framework ships with such an agent, the I nst r unent at i onSavi ngAgent , which is packaged
inthespring-agent . j ar that was supplied as the value of the - j avaagent argument in the above example.

The output from the execution of the mai n program will look something like that below. (I have introduced a
Thread. sl eep(..) Statement into the cal cul ateEntitlement () implementation so that the profiler actually
captures something other than O milliseconds - the 01234 milliseconds is not an overhead introduced by the
AOP:))

Cal cul ating entitl enment

St opWatch ' ProfilingAspect': running time (mllis) = 1234

01234 100% cal cul ateEntitl enent

Since this LTW is effected using full-blown AspectJ, we are not just limited to advising Spring beans; the
following slight variation on the Mai n program will yield the same result.

package f oo0;
i mport org.springframework. cont ext. support. d assPat hXm Appl i cati onCont ext ;
public final class Main {
public static void main(String[] args) {
new Cl assPat hXm Appl i cati onCont ext ("beans. xm ", Main. cl ass);

Entitl ement Cal cul ati onService entitlenentCal cul ati onService =
new St ubEntit| enent Cal cul ati onService();

/1 the profiling aspect will be 'woven' around this nethod execution
entitlement Cal cul ati onService. cal cul ateEntitlenment();

Notice how in the above program we are simply bootstrapping the Spring container, and then creating a new
instance of the St ubEntitlenment Cal cul ati onServi ce totally outside the context of Spring... the profiling
advice still getswovenin.

The example admittedly is simplistic... however the basics of the LTW support in Spring have all been
introduced in the above example, and the rest of this section will explain the ‘why' behind each bit of
configuration and usage in detail.

Note

e
TheprofilingAspect used in thisexample may be basic, but it is quite useful. It is a nice example
of a development-time aspect that developers can use during development (of course), and then
quite easily exclude from builds of the application being deployed into UAT or production.

Spring Framework (2.5.6) 166

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html

Aspect Oriented Programming with Spring

6.8.4.2. Aspects

The aspects that you use in LTW have to be Aspectd aspects. They can be written in either the Aspect]
language itself or you can write your aspects in the @AspectJ-style. The latter option is of course only an
option if you are using Java 5+, but it does mean that your aspects are then both valid AspectJ and Spring AOP
aspects. Furthermore, the compiled aspect classes need to be available on the classpath.

6.8.4.3. '"META- | NF/ aop. xml '

The AspectJ LTW infrastructure is configured using one or more 'META- | NF/ aop. xm ' files, that are on the Java
classpath (either directly, or moretypicaly injar files).

The structure and contents of this file is detailed in the main AspectJ reference documentation, and the
interested reader isreferred to that resource. (I appreciate that this section is brief, but the 'aop. xm ' file is 100%
Aspect] - there is no Spring-specific information or semantics that apply to it, and so there is no extra value that
| can contribute either as a result), so rather than rehash the quite satisfactory section that the AspectJ
developerswrote, | am just directing you there.)

6.8.4.4. Required libraries (JARS)

At aminimum you will need the following libraries to use the Spring Framework's support for AspectJ LTW:

1. spring.jar (version 2.5 or later)
2. aspectjrt.jar (version 1.5 or later)
3. aspectjweaver.jar (version 1.5 or later)

If you are using the Spring-provided agent to enable instrumentation, you will also need:

1. spring-agent.jar

6.8.4.5. Spring configuration

The key component in Springs LTW support is the LoadTineweaver interface (in the
org. springframewor k. i nstrunent. cl assl oadi ng package), and the numerous implementations of it that ship
with the Spring distribution. A LoadTi meVeaver is responsible for adding one or more
java.lang.instrument.d assFil eTransformers t0 @ d assLoader at runtime, which opens the door to all
manner of interesting applications, one of which happens to be the LTW of aspects.

Tip

e
If you are unfamiliar with the idea of runtime class file transformation, you are encouraged to read
the Javadoc APl documentation for thej ava. | ang. i nst runent package before continuing. Thisis
not a huge chore because there is - rather annoyingly - precious little documentation there... the key
interfaces and classes will at least be laid out in front of you for reference as you read through this
section.

Configuring a LoadTi mreWeaver using XML for a particular Appl i cati onCont ext can be as easy as adding one
line. (Please note that you almost certainly will need to be using an Appl i cati onContext as your Spring
container - typically a BeanFactory will not be enough because the LTW support makes use of

Spring Framework (2.5.6) 167

http://www.eclipse.org/aspectj/doc/released/devguide/ltw-configuration.html

Aspect Oriented Programming with Spring

BeanFact or yPost Processors.)

To enable the Spring Framework's LTW support, you need to configure a LoadTi neWeaver , which typicaly is
done using the <cont ext : | oad- ti me- weaver /> element. Find below a valid <cont ext : | oad- ti ne- weaver/ >
definition that uses default settings.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranework. or g/ schema/ cont ext "
xsi : schemaLocat i on="
http://ww. spri ngframework. or g/ schenma/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. or g/ schema/ context http://ww. springframework. or g/ schema/ cont ext/ spri ng-cont ext-2. 5. x

<cont ext : | oad-ti ne- weaver/ >

</ beans>

The above <cont ext : | oad-ti me- weaver/ > bean definition will define and register a number of LTW-specific
infrastructure beans for you automatically, such as a LoadTi neweaver and an Aspect JWeavi ngEnabl er . Notice
how the <cont ext : | oad-ti me- weaver/ > is defined in the 'cont ext ' namespace; note also that the referenced
XML Schemafileisonly available in versions of Spring 2.5 and later.

What the above configuration does is define and register a default LoadTi meweaver bean for you. The default
LoadTi meWeaver iS the Def aul t Cont ext LoadTi meWeaver class, which attempts to decorate an automatically
detected LoadTi neWeaver : the exact type of LoadTi meweaver that will be ‘automatically detected' is dependent
upon your runtime environment (summarised in the following table).

Table 6.1. Def aul t Cont ext LoadTi meWeaver LoadTi meWaver s

Runtime Environment LoadTi meWeaver implementation
Running in BEA's Weblogic 10 WebLogi cLoadTi meVeaver
Running in Oracle's OC4J OC4JLoadTi meWeaver

Running in GlassFish d assFi shLoadTi meWeaver

JVM started with Spring I nst runent at i onLoadTi meVaver

I nst runment at i onSavi ngAgent

(java -javaagent:path/to/spring-agent.jar)

Fallback, expecting the underlying ClassL oader to Ref | ecti veLoadTi meWeaver
follow common conventions (e.g. applicable to
Toncat | nst rument abl ed assLoader and to Resin)

Note that these are just the LoadTineweavers that are autodetected when using the
Def aul t Cont ext LoadTi meWeaver: it is of course possible to specify exactly which LoadTi meveaver
implementation that you wish to use by specifying the fully-qualified classname as the value of the
'weaver - cl ass' attribute of the <cont ext : | oad-ti me-weaver/ > element. Find below an example of doing just
that:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframewor k. or g/ schena/ beans"

Spring Framework (2.5.6) 168

http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/weblogic/server
http://www.oracle.com/technology/products/oc4j/index.html
http://glassfish.dev.java.net/

Aspect Oriented Programming with Spring

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: cont ext ="http://ww. spri ngfranework. or g/ schema/ cont ext "

xsi : schemalLocat i on="
http://ww. springframework. or g/ scherma/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. or g/ schema/ context http://ww. springframework. or g/ schema/ cont ext/ spri ng-context-2.5. x

<cont ext: | oad-ti ne- weaver
weaver - cl ass="org. spri ngf ranewor k. i nstrunent . cl assl oadi ng. Ref | ecti veLoadTi neWeaver"/ >

</ beans>

The LoadTi neweaver that is defined and registered by the <cont ext : | oad- t i me- weaver/ > element can be later
retrieved from the Spring container using the well-known name 'l oadTi meWeaver'. Remember that the
LoadTi meWeaver eXists just as a mechanism for Spring's LTW infrastructure to add one or more
O assFileTransformers. The actual dassFileTransforner that does the LTW is the
Cl assPreProcessor Agent Adapter (from the org. aspectj.weaver.|oadti me package) class. See the
class-level Javadoc for the O assPr eProcessor Agent Adapt er class for further details, because the specifics of
how the weaving is actually effected is beyond the scope of this section.

There is one final attribute of the <context:1oad-tine-weaver/> left to discuss: the 'aspectj - weavi ng'
attribute. Thisis asimple attribute that controls whether LTW is enabled or not, it is as ssimple as that. It accepts
one of three possible values, summarised below, with the default value if the attribute is not present being '
aut odet ect '

Table 6.2. 'aspect j - weavi ng' attribute values

Attribute Value Explanation

on Aspect] weaving is on, and aspects will be woven at
|oad-time as appropriate.

of f LTW isoff... no aspect will be woven at load-time.

aut odet ect If the Spring LTW infrastructure can find at least one
'META- | NF/ aop. xni ' file, then Aspectd weaving is on,
elseitisoff. Thisisthe default value.

6.8.4.6. Environment-specific configuration

This last section contains any additional settings and configuration that you will need when using Spring's
LTW support in environments such as application servers and web containers.

6.8.4.6.1. Generic Java applications

You may enable Spring's support for LTW in any Java application (standalone as well as application server
based) through the use of the Spring-provided instrumentation agent. To do so, start the VM by by specifying
the -j avaagent : pat h/ t o/ spri ng- agent . j ar option. Note that this requires modification of the VM launch
script which may prevent you from using this in application server environments (depending on your operation
policies).

6.8.4.6.2. Tomcat

For web applications deployed onto Apache Tomcat 5.0 and above, Spring provides a

Spring Framework (2.5.6) 169

Aspect Oriented Programming with Spring

Tontat | nst runent abl ed assLoader t0 be registered as the web app class loader. The required Tomcat setup
looks as follows, to be included either in Tomcat's central server.xm file or in an application-specific
META- | NF/ cont ext . xni file within the WAR root. Spring's spri ng-t ontat - weaver . j ar needs to be included
in Tomcat's common lib directory in order to make this setup work.

<Cont ext pat h="/nyWebApp" docBase="/ny/webApp/| ocati on">
<Loader | oaderd ass="org. springframework.instrunent.cl assl oadi ng.tontat. Tontat | nstrunent abl eCl assLoader"
useSyst enCl assLoader AsPar ent ="f al se"/ >
</ Cont ext >

Note: We generally recommend Tomcat 5.5.20 or above when enabling load-time weaving. Prior versions have
known issues with custom d assLoader Setup.

Alternatively, consider the use of the Spring-provided generic VM agent, to be specified in Tomcat's launch
script (see above). This will make instrumentation available to all deployed web applications, no matter which
Classl oader they happen to run on.

For a more detailed discussion of Tomcat-based weaving setup, check out the Section 12.6.1.3.1, “Tomcat
load-time weaving setup (5.0+)” section which discusses specifics of various Tomcat versions. While the
primary focus of that section is on JPA persistence provider setup, the Tomcat setup characteristics apply to
genera load-time weaving as well.

6.8.4.6.3. WebLogic, OC4J, Resin, GlassFish

Recent versions of BEA WebL ogic (version 10 and above), Oracle Containers for Java EE (OC4J 10.1.3.1 and
above) and Resin (3.1 and above) provide a ClassLoader that is capable of loca instrumentation. Spring's
native LTW leverages such ClassLoaders to enable Aspect] weaving. You can enable LTW by simply
activating cont ext : | oad- ti me- weaver as described earlier. Specifically, you do not need to modify the launch
script to add - j avaagent : pat h/ t o/ spri ng-agent . j ar.

GlassFish provides an instrumentation-capable ClassLoader as well, but only in its EAR environment. For
GlassFish web applications, follow the Tomcat setup instructions as outlined above.

6.9. Further Resources

More information on AspectJ can be found on the Aspect] website.

The book Eclipse Aspectd by Adrian Colyer et. a. (Addison-Wesley, 2005) provides a comprehensive
introduction and reference for the AspectJ language.

The book Aspect] in Action by Ramnivas Laddad (Manning, 2003) comes highly recommended; the focus of
the book is on AspectJ, but alot of general AOP themes are explored (in some depth).

Spring Framework (2.5.6) 170

http://www.eclipse.org/aspectj

Chapter 7. Spring AOP APIs

7.1. Introduction

The previous chapter described the Spring 2.0 support for AOP using @Aspect] and schema-based aspect
definitions. In this chapter we discuss the lower-level Spring AOP APIs and the AOP support used in Spring
1.2 applications. For new applications, we recommend the use of the Spring 2.0 AOP support described in the
previous chapter, but when working with existing applications, or when reading books and articles, you may
come across Spring 1.2 style examples. Spring 2.0 is fully backwards compatible with Spring 1.2 and
everything described in this chapter is fully supported in Spring 2.0.

7.2. Pointcut APl in Spring

Let'slook at how Spring handles the crucial pointcut concept.

7.2.1. Concepts

Spring's pointcut model enables pointcut reuse independent of advice types. It's possible to target different
advice using the same pointcut.

The or g. spri ngf ramewor k. aop. Poi nt cut interface is the central interface, used to target advices to particular
classes and methods. The complete interface is shown below:

public interface Pointcut {
ClassFilter getCassFilter();

Met hodvat cher get Met hodMat cher () ;

Splitting the Poi ntcut interface into two parts allows reuse of class and method matching parts, and
fine-grained composition operations (such as performing a"union" with another method matcher).

The d assFil ter interface is used to restrict the pointcut to a given set of target classes. If the mat ches()
method always returns true, all target classes will be matched:

public interface CassFilter {

bool ean mat ches(d ass cl azz);

The Met hodnat cher interface is normally more important. The complete interface is shown below:

public interface Methodvatcher {
bool ean mat ches(Method m Cl ass targetd ass);
bool ean i sRuntine();

bool ean mat ches(Method m Cl ass targetC ass, Object[] args);

The mat ches(Met hod, O ass) method is used to test whether this pointcut will ever match a given method on

Spring Framework (2.5.6) 171

Spring AOP APIs

atarget class. This evaluation can be performed when an AOP proxy is created, to avoid the need for atest on
every method invocation. If the 2-argument matches method returns true for a given method, and the
i sRunti me() method for the MethodMatcher returns true, the 3-argument matches method will be invoked on
every method invocation. This enables a pointcut to look at the arguments passed to the method invocation
immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their i sRuntine() method returns false. In this case, the
3-argument matches method will never be invoked.

Tip

e
If possible, try to make pointcuts static, allowing the AOP framework to cache the results of
pointcut evaluation when an AOP proxy is created.

7.2.2. Operations on pointcuts

Spring supports operations on pointcuts: notably, union and inter section.

« Union means the methods that either pointcut matches.
« |ntersection means the methods that both pointcuts match.
e Unionisusually more useful.

 Pointcuts can be composed using the static methods in the org.springframewor k.aop.support.Pointcuts class,
or using the ComposablePointcut class in the same package. However, using AspectJ pointcut expressions is
usually a simpler approach.

7.2.3. AspectJ expression pointcuts

Since 2.0, the most important type of pointcut used by Spring is
org. springframewor k. aop. aspect j . Aspect JExpr essi onPoi nt cut . This is a pointcut that uses an AspectJ
supplied library to parse an AspectJ pointcut expression string.

See the previous chapter for a discussion of supported AspectJ pointcut primitives.

7.2.4. Convenience pointcut implementations

Spring provides several convenient pointcut implementations. Some can be used out of the box; others are
intended to be subclassed in application-specific pointcuts.

7.2.4.1. Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the method's arguments.
Static pointcuts are sufficient - and best - for most usages. It's possible for Spring to evaluate a static pointcut
only once, when a method is first invoked: after that, there is no need to evaluate the pointcut again with each
method invocation.

Let's consider some static pointcut implementations included with Spring.

7.2.4.1.1. Regular expression pointcuts

Spring Framework (2.5.6) 172

Spring AOP APIs

One obvious way to specify static pointcuts is regular expressions. Several AOP frameworks besides Spring
make this possible. org. spri ngf ranmewor k. aop. support . Per | 5GRegexpMet hodPoi nt cut IS @ generic regular
expression pointcut, using Perl 5 regular expression syntax. The Per | 5RegexpMet hodPoi nt cut class depends on
Jakarta ORO for regular expression matching. Spring also provides the JdkRegexpMet hodPoi nt cut class that
uses the regular expression support in JDK 1.4+.

Using the Per | 5RegexpMet hodPoi nt cut class, you can provide a list of pattern Strings. If any of these is a
match, the pointcut will evaluate to true. (So the result is effectively the union of these pointcuts.)

The usage is shown below:

<bean i d="settersAndAbsquat ul at ePoi nt cut "
cl ass="org. spri ngf ramewor k. aop. support . Per| 5RegexpMet hodPoi nt cut " >
<property name="patterns">
<list>
<val ue>. *set . *</ val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

Spring provides a convenience class, RegexpMet hodPoi nt cut Advi sor, that alows us to also reference an
Advice (remember that an Advice can be an interceptor, before advice, throws advice etc.). Behind the scenes,
Spring will use a JdkRegexpMet hodPoi nt cut . USing RegexpMet hodPoi nt cut Advi sor simplifies wiring, as the
one bean encapsulates both pointcut and advice, as shown below:

<bean i d="sett er sAndAbsquat ul at eAdvi sor"
cl ass="org. spri ngframewor k. aop. support. RegexpMet hodPoi nt cut Advi sor ">
<property nanme="advi ce">
<ref |ocal ="beanNameOf AopAl | i ancel nterceptor"/>
</ property>
<property name="patterns">
<list>
<val ue>. *set . *</ val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

RegexpMethodPointcutAdvisor can be used with any Advice type.

7.2.4.1.2. Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata attributes:
typically, source-level metadata.

7.2.4.2. Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method arguments, as
well as static information. This means that they must be evaluated with every method invocation; the result
cannot be cached, as arguments will vary.

The main exampleisthecontrol fl ow pointcut.
7.2.4.2.1. Control flow pointcuts

Spring control flow pointcuts are conceptually similar to AspectJ cflow pointcuts, although less powerful.

Spring Framework (2.5.6) 173

Spring AOP APIs

(Thereis currently no way to specify that a pointcut executes below a join point matched by another pointcut.)
A control flow pointcut matches the current call stack. For example, it might fire if the join point was invoked
by a method in the com nyconpany. web package, or by the Sonecal | er class. Control flow pointcuts are
specified using the or g. spri ngf r amewor k. aop. support. Cont r ol Fl owPoi nt cut Class.

Note

"9
Control flow pointcuts are significantly more expensive to evaluate at runtime than even other
dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic pointcuts.

7.2.5. Pointcut superclasses

Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, you'll probably subclass StaticM ethodMatcherPointcut, as shown
below. This requires implementing just one abstract method (although it's possible to override other methods to
customize behavior):

class TestStaticPointcut extends StaticMethodMatcher Poi ntcut {

publ i c bool ean nmatches(Method m C ass targetC ass) {
// return true if customcriteria match
}

}

There are also superclasses for dynamic pointcuts.

Y ou can use custom pointcuts with any advice type in Spring 1.0 RC2 and above.

7.2.6. Custom pointcuts

Because pointcuts in Spring AOP are Java classes, rather than language features (as in AspectJ) it's possible to
declare custom pointcuts, whether static or dynamic. Custom pointcuts in Spring can be arbitrarily complex.
However, using the AspectJ pointcut expression language is recommended if possible.

Note

"9
Later versions of Spring may offer support for "semantic pointcuts' as offered by JAC: for
example, "al methods that change instance variables in the target object.”

7.3. Advice APl in Spring

Let's now look at how Spring AOP handles advice.

7.3.1. Advice lifecycles

Each advice is a Spring bean. An advice instance can be shared across all advised objects, or unique to each
advised object. This corresponds to per-class or per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors. These do
not depend on the state of the proxied object or add new state; they merely act on the method and arguments.

Spring Framework (2.5.6) 174

Spring AOP APIs

Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds state to the
proxied object.

It's possible to use amix of shared and per-instance advice in the same AOP proxy.

7.3.2. Advice types in Spring

Spring provides severa advice types out of the box, and is extensible to support arbitrary advice types. Let us
look at the basic concepts and standard advice types.

7.3.2.1. Interception around advice
The most fundamental advice typein Spring isinterception around advice.

Spring is compliant with the AOP Alliance interface for around advice using method interception.
M ethodl nterceptors implementing around advice should implement the following interface:

public interface Methodlnterceptor extends Interceptor {

oj ect invoke(Met hodl nvocati on invocation) throws Throwabl e;

The Met hodl nvocat i on argument to the i nvoke() method exposes the method being invoked; the target join
point; the AOP proxy; and the arguments to the method. The i nvoke() method should return the invocation's
result: the return value of the join point.

A simple Met hodl nt er cept or implementation looks as follows:

public class Debugl nterceptor inplenments Methodl nterceptor {

public oject invoke(Methodl nvocation invocation) throws Throwabl e {
System out. println("Before: invocation=[" + invocation + "]");
oj ect rval = invocation. proceed();
System out. println("lnvocation returned");
return rval;

Note the call to the Methodinvocation's proceed() method. This proceeds down the interceptor chain towards
the join point. Most interceptors will invoke this method, and return its return value. However, a
Methodlnterceptor, like any around advice, can return a different value or throw an exception rather than
invoke the proceed method. However, you don't want to do this without good reason!

Note
e

Methodinterceptors offer interoperability with other AOP Alliance-compliant AOP
implementations. The other advice types discussed in the remainder of this section implement
common AOP concepts, but in a Spring-specific way. While there is an advantage in using the
most specific advice type, stick with Methodlnterceptor around advice if you are likely to want to
run the aspect in another AOP framework. Note that pointcuts are not currently interoperable
between frameworks, and the AOP Alliance does not currently define pointcut interfaces.

7.3.2.2. Before advice

A simpler advice type is a before advice. This does not need a Met hodl nvocat i on object, since it will only be

Spring Framework (2.5.6) 175

Spring AOP APIs

called before entering the method.

The main advantage of a before advice is that there is no need to invoke the proceed() method, and therefore
no possibility of inadvertently failing to proceed down the interceptor chain.

The Met hodBef or eAdvi ce interface is shown below. (Spring's API design would allow for field before advice,
athough the usual objects apply to field interception and it's unlikely that Spring will ever implement it).
public interface MethodBef oreAdvi ce extends Bef oreAdvice {

voi d before(Method m Object[] args, Object target) throws Throwabl e;

Note the return type is voi d. Before advice can insert custom behavior before the join point executes, but
cannot change the return value. If a before advice throws an exception, this will abort further execution of the
interceptor chain. The exception will propagate back up the interceptor chain. If it is unchecked, or on the
signature of the invoked method, it will be passed directly to the client; otherwise it will be wrapped in an
unchecked exception by the AOP proxy.

An example of abefore advice in Spring, which counts all method invocations:

public class Counti ngBeforeAdvice inplenments Met hodBef or eAdvi ce {
private int count;
public void before(Method m Object[] args, Object target) throws Throwabl e {

++count ;
}

public int getCount() {
return count;
}

Tip
"9
Before advice can be used with any pointcut.

7.3.2.3. Throws advice

Throws advice is invoked after the return of the join point if the join point threw an exception. Spring offers
typed throws advice. Note that this means that the or g. spri ngf ramewor k. aop. Thr owsAdvi ce interface does
not contain any methods: It is a tag interface identifying that the given object implements one or more typed
throws advice methods. These should be in the form of:

af ter Throwi ng([Met hod, args, target], subclassO Throwabl e)

Only the last argument is required. The method signatures may have either one or four arguments, depending
on whether the advice method is interested in the method and arguments. The following classes are examples of
throws advice.

The advice below isinvoked if aRenot eExcept i on isthrown (including subclasses):

public class RenoteThrowsAdvi ce inplements ThrowsAdvi ce {

public void afterThrow ng(Renot eException ex) throws Throwabl e {
/1 Do something with renote exception
}

Spring Framework (2.5.6) 176

Spring AOP APIs

The following advice is invoked if a Servl et Exception is thrown. Unlike the above advice, it declares 4
arguments, so that it has access to the invoked method, method arguments and target object:

public class Servlet ThrowsAdvi ceWthArgunments i npl ements ThrowsAdvi ce {

public void afterThrow ng(Method m Cbject[] args, Object target, ServletException ex) {
/1 Do something with all argunents

}

The fina example illustrates how these two methods could be used in a single class, which handles both
Renot eExcept i on and Ser vl et Except i on. Any humber of throws advice methods can be combined in asingle
class.

public static class Conbi nedThrowsAdvi ce inpl ements ThrowsAdvice {

public void afterThrow ng(Renpt eExcepti on ex) throws Throwabl e {
/1 Do something with renpote exception

}

public void afterThrowi ng(Method m Object[] args, Object target, ServletException ex) {
// Do sonmething with all argunents

}

Note: If athrows-advice method throws an exception itself, it will override the original exception (i.e. change
the exception thrown to the user). The overriding exception will typicaly be a RuntimeException; this is
compatible with any method signature. However, if athrows-advice method throws a checked exception, it will
have to match the declared exceptions of the target method and is hence to some degree coupled to specific
target method signatures. Do not throw an undeclared checked exception that is incompatible with the target
method's signature!

Tip

-

e

Throws advice can be used with any pointcut.

7.3.2.4. After Returning advice

An after returning advice in Spring must implement the org.springframework.aop.After ReturningAdvice
interface, shown below:
public interface AfterReturni ngAdvi ce extends Advice {

voi d afterReturni ng(Object returnValue, Method m Object[] args, Object target)
t hrows Throwabl e;

An after returning advice has access to the return value (which it cannot modify), invoked method, methods
arguments and target.

The following after returning advice counts all successful method invocations that have not thrown exceptions:

public class CountingAfterReturningAdvice inplenments AfterReturningAdvice {
private int count;
public void afterReturning(oject returnValue, Method m Object[] args, Object target)

throws Throwabl e {
++count ;

Spring Framework (2.5.6) 177

Spring AOP APIs

public int getCount() {
return count;
}

This advice doesn't change the execution path. If it throws an exception, this will be thrown up the interceptor
chain instead of the return value.

Tip
"

After returning advice can be used with any pointcut.

7.3.2.5. Introduction advice
Spring treats introduction advice as a special kind of interception advice.

Introduction requires an |ntroductionAdvi sor, and an Introductionlnterceptor, implementing the
following interface:
public interface Introductionlnterceptor extends Methodlnterceptor {

bool ean i npl ementsinterface(C ass intf);

The i nvoke() method inherited from the AOP Alliance Met hodl nt er cept or interface must implement the
introduction: that is, if the invoked method is on an introduced interface, the introduction interceptor is
responsible for handling the method call - it cannot invoke pr oceed() .

Introduction advice cannot be used with any pointcut, as it applies only at class, rather than method, level. You
can only use introduction advice with the I nt r oduct i onAdvi sor, which has the following methods:
public interface |ntroductionAdvi sor extends Advisor, |ntroductionlnfo {
ClassFilter getClassFilter();

voi d validatelnterfaces() throws Il egal Argunent Excepti on;

}

public interface Introductionlnfo {

Class[] getlnterfaces();

Thereis no Met hodMat cher , and hence no Poi nt cut , associated with introduction advice. Only classfiltering is
logical.

Theget I nterfaces() method returns the interfaces introduced by this advisor.
The val i dat el nterfaces() method is used internally to see whether or not the introduced interfaces can be
implemented by the configured I nt r oduct i onl nt er cept or .

Let's look at a simple example from the Spring test suite. Let's suppose we want to introduce the following
interface to one or more objects:

public interface Lockable {
void | ock();
voi d unl ock();
bool ean | ocked();

Spring Framework (2.5.6) 178

Spring AOP APIs

This illustrates a mixin. We want to be able to cast advised objects to Lockable, whatever their type, and call
lock and unlock methods. If we call the lock() method, we want all setter methods to throw aLockedExcept i on.
Thus we can add an aspect that provides the ability to make objects immutable, without them having any
knowledge of it: agood example of AOP.

Firstly, welll need an I ntroductionl nterceptor that does the heavy lifting. In this case, we extend the
org. spri ngframewor k. aop. support. Del egati ngl ntroductionl nterceptor convenience class. We could
implement Introductioninterceptor directly, but using Del egat i ngl ntroducti onl nt er cept or IS best for most
cases.

The Del egat i ngl ntroduct i onl nt er cept or iS designed to delegate an introduction to an actual implementation
of the introduced interface(s), concealing the use of interception to do so. The delegate can be set to any object
using a constructor argument; the default delegate (when the no-arg constructor is used) is this. Thus in the
example below, the delegate is the LockM xi n subclass of Del egatingl ntroducti onl nterceptor. Given a
delegate (by default itself), a Del egatinglntroductionlnterceptor instance looks for al interfaces
implemented by the delegate (other than Introductionlnterceptor), and will support introductions against any of
them. It's possible for subclasses such as LockM xi n to call the suppressinterface(dass intf) method to
suppress interfaces that should not be exposed. However, no matter how many interfaces an
I ntroductionlnterceptor iS prepared to support, the IntroductionAdvisor used will control which
interfaces are actually exposed. An introduced interface will conceal any implementation of the same interface
by the target.

Thus LockMixin subclasses Del egatingl ntroductionlnterceptor and implements Lockable itself. The
superclass automatically picks up that Lockable can be supported for introduction, so we don't need to specify
that. We could introduce any number of interfacesin thisway.

Note the use of the | ocked instance variable. This effectively adds additional state to that held in the target
object.

public class LockM xi n extends Del egati ngl ntroducti onl nterceptor
i npl enents Lockabl e {

private bool ean | ocked;

public void lock() {
this.locked = true;
}

public void unlock() {
this.locked = fal se;
}

public bool ean | ocked() ({
return this.|ocked,;

}

public oject invoke(Methodl nvocation invocation) throws Throwabl e {
if (locked() && invocation.getMethod().getNane().indexO("set") == 0)
t hrow new LockedException();
return super.invoke(invocation);

Often it isn't necessary to override the invoke() method: the Del egatingl ntroductionl nter cept or
implementation - which calls the delegate method if the method is introduced, otherwise proceeds towards the
join point - is usually sufficient. In the present case, we need to add a check: no setter method can be invoked if

Spring Framework (2.5.6) 179

Spring AOP APIs

in locked mode.

The introduction advisor required is simple. All it needsto do is hold adistinct LockM xi n instance, and specify
the introduced interfaces - in this case, just Lockabl e. A more complex example might take a reference to the
introduction interceptor (which would be defined as a prototype): in this case, there's no configuration relevant
for aLockM xi n, SO we simply create it using new.

public class LockM xi nAdvi sor extends Defaul t|ntroductionAdvisor {

public LockM xi nAdvi sor () {
super (new LockM xi n(), Lockabl e.cl ass);

We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It'simpossible to
use an I ntroducti onl nt er cept or Without an IntroductionAdvisor.) As usua with introductions, the advisor
must be per-instance, asit is stateful. We need a different instance of LockM xi nAdvi sor, and hence LockM xi n,
for each advised object. The advisor comprises part of the advised object's state.

We can apply this advisor programmatically, using the Advi sed. addAdvi sor () method, or (the recommended
way) in XML configuration, like any other advisor. All proxy creation choices discussed below, including
"auto proxy creators," correctly handle introductions and stateful mixins.

7.4. Advisor APl in Spring

In Spring, an Advisor is an aspect that contains just a single advice object associated with a pointcut expression.

Apart from the special case of introductions, any advisor can be used with any advice
org. spri ngframewor k. aop. support . Def aul t Poi nt cut Advi sor iS the most commonly used advisor class. For
example, it can be used with aMet hodl nt er cept or , Bef or eAdvi ce OF Thr owsAdvi ce.

It is possible to mix advisor and advice types in Spring in the same AOP proxy. For example, you could use a
interception around advice, throws advice and before advice in one proxy configuration: Spring will
automatically create the necessary interceptor chain.

7.5. Using the ProxyFactoryBean to create AOP proxies

If you're using the Spring 10C container (an ApplicationContext or BeanFactory) for your business objects -
and you should be! - you will want to use one of Spring's AOP FactoryBeans. (Remember that a factory bean
introduces alayer of indirection, enabling it to create objects of a different type.)

5 Note
“a

The Spring 2.0 AOP support aso uses factory beans under the covers.

The basic way to create an AOP proxy in Spring is to use the
org.springframewor k.aop.framework.ProxyFactoryBean. This gives complete control over the pointcuts and
advice that will apply, and their ordering. However, there are simpler options that are preferable if you don't
need such control.

7.5.1. Basics

Spring Framework (2.5.6) 180

Spring AOP APIs

The ProxyFact or yBean, like other Spring Fact or yBean implementations, introduces a level of indirection. If
you define a Pr oxyFact or yBean With name f oo, what objects referencing f oo see is not the Pr oxyFact or yBean
instance itself, but an object created by the Pr oxyFact or yBean's implementation of the get Obj ect () method.
This method will create an AOP proxy wrapping atarget object.

One of the most important benefits of using a ProxyFact or yBean or another loC-aware class to create AOP
proxies, is that it means that advices and pointcuts can also be managed by 10C. This is a powerful feature,
enabling certain approaches that are hard to achieve with other AOP frameworks. For example, an advice may
itself reference application objects (besides the target, which should be available in any AOP framework),
benefiting from all the pluggability provided by Dependency Injection.

7.5.2. JavaBean properties

In common with most Fact or yBean implementations provided with Spring, the ProxyFact oryBean class is
itself a JavaBean. Its properties are used to:

« Specify the target you want to proxy.

» Specify whether to use CGLIB (see below and aso the section entitled Section 7.5.3, “JDK- and
CGLIB-based proxies’).

Some key properties are inherited from or g. spri ngf r amewor k. aop. f r amewor k. ProxyConf i g (the superclass
for all AOP proxy factoriesin Spring). These key properties include:

e proxyTarget d ass: true if the target class is to be proxied, rather than the target class interfaces. If this
property value is set to true, then CGLIB proxies will be created (but see also below the section entitled
Section 7.5.3, “JDK- and CGLIB-based proxies’).

 optim ze: controls whether or not aggressive optimizations are applied to proxies created via CGLIB. One
should not blithely use this setting unless one fully understands how the relevant AOP proxy handles
optimization. Thisis currently used only for CGLIB proxies; it has no effect with JIDK dynamic proxies.

» frozen: if aproxy configuration isfrozen, then changes to the configuration are no longer allowed. Thisis
useful both as a slight optimization and for those cases when you don't want callers to be able to manipulate
the proxy (viathe Advi sed interface) after the proxy has been created. The default value of this property is
f al se, SO changes such as adding additional advice are allowed.

¢ exposePr oxy: determines whether or not the current proxy should be exposed in a Thr eadLocal S0 that it can
be accessed by the target. If atarget needs to obtain the proxy and the exposePr oxy property is set to t rue,
the target can use the AopCont ext . cur rent Proxy() method.

* aopProxyFact ory: the implementation of AcpProxyFact ory to use. Offers a way of customizing whether to
use dynamic proxies, CGLIB or any other proxy strategy. The default implementation will choose dynamic
proxies or CGLIB appropriately. There should be no need to use this property; it is intended to allow the
addition of new proxy typesin Spring 1.1.

Other properties specific to Pr oxyFact or yBean include:

e proxylnterfaces: array of String interface names. If this isn't supplied, a CGLIB proxy for the target class
will be used (but see also below the section entitled Section 7.5.3, “JDK- and CGLIB-based proxies”).

e interceptorNanmes: String array of Advisor, interceptor or other advice names to apply. Ordering is

Spring Framework (2.5.6) 181

Spring AOP APIs

significant, on afirst come-first served basis. That is to say that the first interceptor in the list will be the first
to be able to intercept the invocation.

The names are bean names in the current factory, including bean names from ancestor factories. You can't
mention bean references here since doing so would result in the ProxyFact or yBean ignoring the singleton
setting of the advice.

You can append an interceptor name with an asterisk (*). This will result in the application of all advisor
beans with names starting with the part before the asterisk to be applied. An example of using this feature
can be found in Section 7.5.6, “Using 'global’ advisors’.

« singleton: whether or not the factory should return a single object, no matter how often the get j ect ()
method is called. Several Fact or yBean implementations offer such a method. The default value is t rue. If
you want to use stateful advice - for example, for stateful mixins - use prototype advices along with a
singleton value of f al se.

7.5.3. JDK- and CGLIB-based proxies

This section serves as the definitive documentation on how the Pr oxyFact or yBean chooses to create one of
either a JDK- and CGLIB-based proxy for a particular target object (that is to be proxied).

Note

e
The behavior of the ProxyFact oryBean with regard to creating JDK- or CGLIB-based proxies
changed between versions 1.2.x and 2.0 of Spring. The ProxyFact or yBean how exhibits similar
semantics with regard to auto-detecting interfaces as those of the Transact i onPr oxyFact or yBean
class.

If the class of a target object that is to be proxied (hereafter simply referred to as the target class) doesn't
implement any interfaces, then a CGLIB-based proxy will be created. Thisisthe easiest scenario, because JDK
proxies are interface based, and no interfaces means JDK proxying isn't even possible. One simply plugsin the
target bean, and specifies the list of interceptors viathei nt er cept or Nanes property. Note that a CGL1B-based
proxy will be created even if the pr oxyTar get O ass property of the ProxyFact or yBean has been set to f al se.
(Obvioudly this makes no sense, and is best removed from the bean definition because it is at best redundant,
and at worst confusing.)

If the target class implements one (or more) interfaces, then the type of proxy that is created depends on the
configuration of the Pr oxyFact or yBean.

If the proxyTar get O ass property of the ProxyFact or yBean has been set to t r ue, then a CGLIB-based proxy
will be created. This makes sense, and is in keeping with the principle of least surprise. Even if the
proxyl nterfaces property of the ProxyFact oryBean has been set to one or more fully qualified interface
names, the fact that the prooxyTar get d ass property is set to t rue will cause CGLIB-based proxying to be in
effect.

If the proxyl nt er f aces property of the ProxyFact or yBean has been set to one or more fully qualified interface
names, then a JDK-based proxy will be created. The created proxy will implement all of the interfaces that
were specified in the proxyl nt erfaces property; if the target class happens to implement a whole lot more
interfaces than those specified in the proxyl nt er f aces property, that is all well and good but those additional
interfaces will not be implemented by the returned proxy.

If the pr oxyl nt er f aces property of the Pr oxyFact or yBean has not been set, but the target class does implement

Spring Framework (2.5.6) 182

Spring AOP APIs

one (or more) interfaces, then the Pr oxyFact or yBean will auto-detect the fact that the target class does actually
implement at least one interface, and a JDK-based proxy will be created. The interfaces that are actually
proxied will be all of the interfaces that the target class implements; in effect, this is the same as simply
supplying a list of each and every interface that the target class implements to the pr oxyl nt er f aces property.
However, it is significantly less work, and less prone to typos.

7.5.4. Proxying interfaces

Let'slook at a simple example of ProxyFact or yBean in action. This example involves:

» A target bean that will be proxied. Thisisthe "personTarget" bean definition in the example below.
« An Advisor and an Interceptor used to provide advice.

« An AOP proxy bean definition specifying the target object (the personTarget bean) and the interfaces to
proxy, along with the advices to apply.

<bean i d="personTarget" class="com nyconpany. Personl npl ">
<property name="nane"><val ue>Tony</val ue></ property>
<property name="age"><val ue>51</val ue></ property>

</ bean>

<bean id="nyAdvi sor" cl ass="com nyconpany. MyAdvi sor ">
<property name="soneProperty"><val ue>Custom string property val ue</val ue></ property>
</ bean>

<bean i d="debugl nterceptor" class="org. springfranmework. aop. i nterceptor. Debuglnterceptor">
</ bean>

<bean i d="person"
cl ass="org. spri ngf ramewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="proxyl nterfaces"><val ue>com nmyconpany. Per son</ val ue></ property>

<property name="target"><ref |ocal ="personTarget"/></property>
<property name="inter ceptor Nanes" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

Note that thei nt er cept or Narres property takes alist of String: the bean names of the interceptor or advisorsin
the current factory. Advisors, interceptors, before, after returning and throws advice objects can be used. The
ordering of advisorsis significant.

Note

-

e

Y ou might be wondering why the list doesn't hold bean references. The reason for thisisthat if the
ProxyFactoryBean's singleton property is set to false, it must be able to return independent proxy
instances. If any of the advisors is itself a prototype, an independent instance would need to be
returned, so it's necessary to be able to obtain an instance of the prototype from the factory; holding
areference isn't sufficient.

The "person" bean definition above can be used in place of a Person implementation, as follows:

Person person = (Person) factory.getBean("person");

Spring Framework (2.5.6) 183

Spring AOP APIs

Other beans in the same [0C context can express a strongly typed dependency on it, as with an ordinary Java
object:

<bean i d="personUser" cl ass="com myconpany. PersonUser" >
<property name="person"><ref |ocal ="person" /></property>
</ bean>

The personUser class in this example would expose a property of type Person. As far as it's concerned, the
AOP proxy can be used transparently in place of a"rea" person implementation. However, its class would be a
dynamic proxy class. It would be possible to cast it to the Advi sed interface (discussed below).

It's possible to conceal the distinction between target and proxy using an anonymous inner bean, as follows.
Only the Pr oxyFact or yBean definition is different; the advice isincluded only for completeness:

<bean i d="nyAdvi sor" class="com nyconpany. MyAdvi sor ">
<property name="soneProperty"><val ue>Custom string property val ue</val ue></property>
</ bean>

<bean i d="debugl nterceptor" class="org.springfranmework. aop. i nterceptor.Debuglnterceptor"/>

<bean i d="person" cl ass="org. spri ngframework. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="proxyl nterfaces"><val ue>com nyconpany. Per son</ val ue></ property>
<l-- Use inner bean, not |local reference to target -->
<property name="target">
<bean cl ass="com nyconpany. Per sonl npl ">
<property name="nane"><val ue>Tony</val ue></ property>
<property nanme="age"><val ue>51</val ue></ property>
</ bean>
</ property>
<property nanme="inter ceptor Nanes" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

This has the advantage that there's only one object of type Person: useful if we want to prevent users of the
application context from obtaining a reference to the un-advised object, or need to avoid any ambiguity with
Spring 1oC autowiring. There's also arguably an advantage in that the ProxyFactoryBean definition is
self-contained. However, there are times when being able to obtain the un-advised target from the factory might
actually be an advantage: for example, in certain test scenarios.

7.5.5. Proxying classes

What if you need to proxy aclass, rather than one or more interfaces?

Imagine that in our example above, there was no Per son interface: we needed to advise a class called Per son
that didn't implement any business interface. In this case, you can configure Spring to use CGLIB proxying,
rather than dynamic proxies. Simply set the proxyTar get C ass property on the ProxyFactoryBean above to
true. While it's best to program to interfaces, rather than classes, the ability to advise classes that don't
implement interfaces can be useful when waorking with legacy code. (In general, Spring isn't prescriptive. While
it makes it easy to apply good practices, it avoids forcing a particular approach.)

If you want to, you can force the use of CGLIB in any case, even if you do have interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this generated
subclass to delegate method calls to the original target: the subclass is used to implement the Decorator pattern,

Spring Framework (2.5.6) 184

Spring AOP APIs

weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues to consider:

* Fi nal methods can't be advised, asthey can't be overridden.
¢ You'll need the CGLIB 2 binaries on your classpath; dynamic proxies are available with the JDK.

There's little performance difference between CGLIB proxying and dynamic proxies. As of Spring 1.0,
dynamic proxies are dightly faster. However, this may change in the future. Performance should not be a
decisive consideration in this case.

7.5.6. Using 'global’ advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching the part before the
asterisk, will be added to the advisor chain. This can come in handy if you need to add a standard set of ‘global’
advisors:

<bean i d="proxy" class="org.springframework. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="target" ref="service"/>
<property nanme="inter ceptor Nanes" >
<list>
<val ue>gl obal *</ val ue>
</list>
</ property>
</ bean>

<bean i d="gl obal _debug" cl ass="org. spri ngframework. aop. i nt er cept or. Debugl nt erceptor"/>
<bean i d="gl obal _performance" class="org. springfranmework. aop.interceptor.PerformanceMnitorlnterceptor"/>

7.6. Concise proxy definitions

Especially when defining transactional proxies, you may end up with many similar proxy definitions. The use
of parent and child bean definitions, along with inner bean definitions, can result in much cleaner and more
concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

<bean id="t xProxyTenpl ate" abstract="true"
cl ass="org. spri ngframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property nanme="transacti onManager" ref="transacti onManager"/>
<property nanme="transactionAttri butes">
<pr ops>
<prop key="*">PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

Thiswill never be instantiated itself, so may actually be incomplete. Then each proxy which needsto be created
isjust a child bean definition, which wraps the target of the proxy as an inner bean definition, since the target
will never be used on its own anyway.

<bean id="nyService" parent="txProxyTenpl ate">
<property name="target">
<bean cl ass="org. spri ngframewor k. sanpl es. MySer vi cel npl ">
</ bean>
</ property>
</ bean>

Spring Framework (2.5.6) 185

Spring AOP APIs

It is of course possible to override properties from the parent template, such as in this case, the transaction
propagation settings:

<bean i d="nySpeci al Servi ce" parent="txProxyTenpl ate">
<property name="target">
<bean cl ass="org. spri ngframewor k. sanpl es. MySpeci al Servi cel npl ">
</ bean>
</ property>
<property name="transactionAttri butes">
<pr ops>
<prop key="get*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="find*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="I|oad*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="st ore*" >PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the
abstract attribute, as described previously, so that it may not actually ever be instantiated. Application contexts
(but not ssimple bean factories) will by default pre-instantiate all singletons. It is therefore important (at least for
singleton beans) that if you have a (parent) bean definition which you intend to use only as atemplate, and this
definition specifies a class, you must make sure to set the abstract attribute to true, otherwise the application
context will actually try to pre-instantiate it.

7.7. Creating AOP proxies programmatically with the
ProxyFactory

It's easy to create AOP proxies programmatically using Spring. This enables you to use Spring AOP without
dependency on Spring loC.

The following listing shows creation of a proxy for a target object, with one interceptor and one advisor. The
interfaces implemented by the target object will automatically be proxied:

ProxyFactory factory = new ProxyFact ory(myBusi nesslnterfacel npl);
factory. addl nt er cept or (myMet hodl nterceptor);
factory. addAdvi sor (myAdvi sor) ;

My/Busi nessinterface tb = (M/Businesslnterface) factory.getProxy();

The first step is to construct an object of type or g. spri ngf r amewor k. aop. f r amewor k. Pr oxyFact ory. Y0ouU can
create this with a target object, as in the above example, or specify the interfaces to be proxied in an alternate
constructor.

You can add interceptors or advisors, and manipulate them for the life of the ProxyFactory. If you add an
IntroductionlnterceptionAroundAdvisor you can cause the proxy to implement additional interfaces.

There are also convenience methods on ProxyFactory (inherited from Advi sedSuppor t) which allow you to add
other advice types such as before and throws advice. AdvisedSupport is the superclass of both ProxyFactory
and ProxyFactoryBean.

Tip

"9
Integrating AOP proxy creation with the 10C framework is best practice in most applications. We
recommend that you externalize configuration from Java code with AOP, asin general.

Spring Framework (2.5.6) 186

Spring AOP APIs

7.8. Manipulating advised objects

However you create AOP proxies, you can manipulate them using the
org. spri ngfranmewor k. aop. f ramewor k. Advi sed interface. Any AOP proxy can be cast to this interface,
whichever other interfaces it implements. This interface includes the following methods:

Advi sor[] get Advi sors();

voi d addAdvi ce(Advi ce advi ce) throws AopConfi gExcepti on;

voi d addAdvi ce(int pos, Advice advice)
t hrows AopConfi gExcepti on;

voi d addAdvi sor (Advi sor advi sor) throws AopConfi gExcepti on;

voi d addAdvi sor (i nt pos, Advisor advisor) throws AopConfi gExcepti on;

int indexOf (Advi sor advisor);

bool ean renobveAdvi sor (Advi sor advi sor) throws AopConfi gException;
voi d renmoveAdvi sor (i nt index) throws AopConfi gExcepti on;
bool ean repl aceAdvi sor (Advi sor a, Advisor b) throws AopConfi gException;

bool ean i sFrozen();

The get Advi sor s() method will return an Advisor for every advisor, interceptor or other advice type that has
been added to the factory. If you added an Advisor, the returned advisor at thisindex will be the object that you
added. If you added an interceptor or other advice type, Spring will have wrapped this in an advisor with a
pointcut that always returns true. Thus if you added a Met hodl nt er cept or , the advisor returned for this index
will be an Def aul t Poi nt cut Advi sor returning your Met hodl nt er cept or and a pointcut that matches all classes
and methods.

The addAdvi sor () methods can be used to add any Advisor. Usually the advisor holding pointcut and advice
will be the generic Def aul t Poi nt cut Advi sor, which can be used with any advice or pointcut (but not for
introductions).

By default, it's possible to add or remove advisors or interceptors even once a proxy has been created. The only
restriction is that it's impossible to add or remove an introduction advisor, as existing proxies from the factory
will not show the interface change. (Y ou can obtain a new proxy from the factory to avoid this problem.)

A simple example of casting an AOP proxy to the Advi sed interface and examining and manipulating its
advice:

Advi sed advi sed = (Advi sed) nyQnject;

Advi sor[] advi sors = advi sed. get Advi sors();

i nt ol dAdvi sor Count = advi sors. | ength;

System out . println(ol dAdvi sor Count + " advi sors");

/1 Add an advice like an interceptor w thout a pointcut

/1 WIIl match all proxied methods

// Can use for interceptors, before, after returning or throws advice
advi sed. addAdvi ce(new Debugl nterceptor());

// Add sel ective advice using a pointcut
advi sed. addAdvi sor (new Def aul t Poi nt cut Advi sor (mySpeci al Poi nt cut, myAdvice));

assert Equal s(" Added two advi sors",
ol dAdvi sor Count + 2, advi sed. get Advi sors().length);

Spring Framework (2.5.6) 187

Spring AOP APIs

Note

It's questionable whether it's advisable (no pun intended) to modify advice on a business object in
production, although there are no doubt legitimate usage cases. However, it can be very useful in
development: for example, in tests. | have sometimes found it very useful to be able to add test
code in the form of an interceptor or other advice, getting inside a method invocation | want to test.
(For example, the advice can get inside a transaction created for that method: for example, to run
SQL to check that a database was correctly updated, before marking the transaction for roll back.)

Depending on how you created the proxy, you can usually set a frozen flag, in which case the Advi sed
i sFrozen() method will return true, and any attempts to modify advice through addition or removal will result
in an AopConfi gExcepti on. The ability to freeze the state of an advised object is useful in some cases, for
example, to prevent calling code removing a security interceptor. It may also be used in Spring 1.1 to alow
aggressive optimization if runtime advice modification is known not to be required.

7.9. Using the "autoproxy" facility

So far we've considered explicit creation of AOP proxies using a Pr oxyFact or yBean oOr similar factory bean.

Spring also alows us to use "autoproxy" bean definitions, which can automatically proxy selected bean
definitions. Thisis built on Spring "bean post processor” infrastructure, which enables modification of any bean
definition as the container |oads.

In this model, you set up some specia bean definitions in your XML bean definition file to configure the auto
proxy infrastructure. This allows you just to declare the targets eligible for autoproxying: you don't need to use
Pr oxyFact or yBean.

There are two ways to do this:

» Using an autoproxy creator that refers to specific beans in the current context.

* A gpecial case of autoproxy creation that deserves to be considered separately; autoproxy creation driven by
source-level metadata attributes.

7.9.1. Autoproxy bean definitions

The org. spri ngf ramewor k. aop. f ramewor k. aut opr oxy package provides the following standard autoproxy
creators.

7.9.1.1. BeanNameAutoProxyCreator

The BeanNaneAut oPr oxyCr eat or Class iS a BeanPost Processor that automatically creates AOP proxies for
beans with names matching literal values or wildcards.

<bean cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. BeanNaneAut oPr oxyCr eat or " >
<property nanme="beanNanes" ><val ue>j dk*, onl yJdk</ val ue></ property>
<property nanme="inter cept or Nanes" >
<list>
<val ue>nyl nt er cept or </ val ue>
</list>
</ property>
</ bean>

Spring Framework (2.5.6) 188

Spring AOP APIs

As with ProxyFact or yBean, there is an i nt er cept or Nanes property rather than a list of interceptors, to allow
correct behavior for prototype advisors. Named "interceptors' can be advisors or any advice type.

As with auto proxying in general, the main point of using BeanNameAut oPr oxyCr eat or IS t0 apply the same
configuration consistently to multiple objects, with minimal volume of configuration. It is a popular choice for
applying declarative transactions to multiple objects.

Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above example, are plain old
bean definitions with the target class. An AOP proxy will be created automatically by the
BeanNameAut oPr oxyCr eat or . The same advice will be applied to al matching beans. Note that if advisors are
used (rather than the interceptor in the above example), the pointcuts may apply differently to different beans.

7.9.1.2. DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is Def aul t Advi sor Aut oPr oxyCr eat or . This will
automagically apply eligible advisors in the current context, without the need to include specific bean namesin
the autoproxy advisor's bean definition. It offers the same merit of consistent configuration and avoidance of
duplication as BeanNameAut oPr oxyCr eat or .

Using this mechanism involves:

e Specifying aDef aul t Advi sor Aut oPr oxyCr eat or bean definition.

» Specifying any number of Advisors in the same or related contexts. Note that these must be Advisors, not
just interceptors or other advices. Thisis necessary because there must be a pointcut to evaluate, to check the
eligibility of each advice to candidate bean definitions.

The Def aul t Advi sor Aut oPr oxyCr eat or Will automatically evaluate the pointcut contained in each advisor, to
see what (if any) advice it should apply to each business object (such as "businessObjectl" and
"businessObject2” in the example).

This means that any number of advisors can be applied automatically to each business object. If no pointcut in
any of the advisors matches any method in a business object, the object will not be proxied. As bean definitions
are added for new business objects, they will automatically be proxied if necessary.

Autoproxying in general has the advantage of making it impossible for callers or dependencies to obtain an
un-advised object. Calling getBean("businessObject1") on this ApplicationContext will return an AOP proxy,
not the target business object. (The "inner bean" idiom shown earlier also offers this benefit.)

<bean cl ass="org. spri ngframewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreator"/>

<bean cl ass="org. springframework.transaction.interceptor. Transacti onAttri buteSourceAdvi sor" >
<property nanme="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean i d="cust omAdvi sor" cl ass="com nyconpany. MyAdvi sor"/ >
<bean i d="busi nessObj ect 1" cl ass="com nmyconpany. Busi nessObj ect 1" >
<l-- Properties omtted -->

</ bean>

<bean i d="busi nessObj ect 2" cl ass="com nyconpany. Busi nessObj ect 2"/ >

The Def aul t Advi sor Aut oPr oxyCr eat or IS very useful if you want to apply the same advice consistently to
many business objects. Once the infrastructure definitions are in place, you can simply add new business
objects without including specific proxy configuration. Y ou can also drop in additional aspects very easily - for

Spring Framework (2.5.6) 189

Spring AOP APIs

example, tracing or performance monitoring aspects - with minimal change to configuration.

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention so that only
certain advisors are evaluated, allowing use of multiple, differently configured, AdvisorAutoProxyCreators in
the same factory) and ordering. Advisors can implement the or g. spri ngf r amewor k. cor e. Or der ed interface to
ensure correct ordering if this is an issue. The TransactionAttributeSourceAdvisor used in the above example
has a configurable order value; the default setting is unordered.

7.9.1.3. AbstractAdvisorAutoProxyCreator

This is the superclass of DefaultAdvisorAutoProxyCreator. You can create your own autoproxy creators by
subclassing this class, in the unlikely event that advisor definitions offer insufficient customization to the
behavior of the framework Def aul t Advi sor Aut oPr oxyCr eat or .

7.9.2. Using metadata-driven auto-proxying

A particularly important type of autoproxying is driven by metadata. This produces a similar programming
model to .NET Servi cedConponent s. Instead of using XML deployment descriptors as in EJB, configuration
for transaction management and other enterprise servicesis held in source-level attributes.

In this case, you use the Def aul t Advi sor Aut oPr oxyCr eat or, in combination with Advisors that understand
metadata attributes. The metadata specifics are held in the pointcut part of the candidate advisors, rather than in
the autoproxy creation class itself.

Thisisreally a specia case of the Def aul t Advi sor Aut oPr oxyCr eat or, but deserves consideration on its own.
(The metadata-aware code is in the pointcuts contained in the advisors, not the AOP framework itself.)

The/attribut es directory of the JPetStore sample application shows the use of attribute-driven autoproxying.
In this case, there's no need to use the Tr ansact i onPr oxyFact or yBean. Simply defining transactional attributes
on business objects is sufficient, because of the use of metadata-aware pointcuts. The bean definitions include
the following code, in/ WEB- | NF/ decl ar at i veSer vi ces. xni . Note that this is generic, and can be used outside
the JPetStore:

<bean cl ass="org. spri ngfranmewor k. aop. f ranmewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreator"/>

<bean cl ass="org. springfranmework.transaction.interceptor. Transacti onAttri buteSourceAdvi sor">
<property name="transactionlnterceptor" ref="transacti onlnterceptor"/>
</ bean>

<bean id="transactionl nterceptor"”
cl ass="org. springframework. transaction.interceptor. Transacti onl nterceptor">
<property name="transacti onManager" ref="transacti onManager"/>
<property name="transactionAttri buteSource">
<bean cl ass="org. springfranmework.transaction.interceptor.AttributesTransactionAttri buteSource">
<property name="attributes" ref="attributes"/>
</ bean>
</ property>
</ bean>

<bean id="attributes" class="org.springfranework. netadata. commons. CormonsAttri butes"/>

The Def aul t Advi sor Aut oPr oxyCr eat or bean definition (the name is not significant, hence it can even be
omitted) will pick up al eligible pointcuts in the current application context. In this case, the
"transactionAdvisor" bean definition, of type Transacti onAttri but eSour ceAdvi sor, Will apply to classes or
methods carrying a transaction attribute. The TransactionAttributeSourceAdvisor depends on a
Transactionlnterceptor, via constructor dependency. The example resolves this via autowiring. The
AttributesTransactionAttributeSource depends on an implementation of the

Spring Framework (2.5.6) 190

Spring AOP APIs

org. springframewor k. net adat a. Attri but es interface. In this fragment, the "attributes’ bean satisfies this,
using the Jakarta Commons Attributes API to obtain attribute information. (The application code must have
been compiled using the Commons Attributes compilation task.)

The /annotation directory of the JPetStore sample application contains an analogous example for
auto-proxying driven by JDK 1.5+ annotations. The following configuration enables automatic detection of
Spring's Tr ansact i onal annotation, leading to implicit proxies for beans containing that annotation:

<bean cl ass="org. spri ngframewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCreator"/>

<bean cl ass="org. springframework. transaction.interceptor. Transacti onAttri buteSourceAdvi sor" >
<property name="transactionlnterceptor" ref="transactionlnterceptor"/>
</ bean>

<bean i d="transactionlnterceptor"
cl ass="org. springframework. transaction.interceptor. Transacti onl nterceptor">
<property name="transacti onManager" ref="transacti onManager"/>
<property name="transacti onAttri buteSource">
<bean cl ass="org. springframework.transaction. annotati on. Annot ati onTransacti onAttri buteSource"/>
</ property>
</ bean>

The Transacti onl nt er cept or defined here depends on a Pl at f or niTr ansact i onManager definition, which is
not included in this generic file (athough it could be) because it will be specific to the application's transaction
requirements (typically JTA, asin this example, or Hibernate, JDO or JDBC):

<bean i d="transacti onManager"
cl ass="org. springframework. transaction.jta.JtaTransacti onManager"/ >

Tip

If you require only declarative transaction management, using these generic XML definitions will
result in Spring automatically proxying all classes or methods with transaction attributes. You
won't need to work directly with AOP, and the programming model is similar to that of .NET
ServicedComponents.

This mechanism is extensible. It's possible to do autoproxying based on custom attributes. Y ou need to:

« Define your custom attribute.

« Specify an Advisor with the necessary advice, including a pointcut that is triggered by the presence of the
custom attribute on a class or method. You may be able to use an existing advice, merely implementing a
static pointcut that picks up the custom attribute.

It's possible for such advisors to be unique to each advised class (for example, mixins): they simply need to be
defined as prototype, rather than singleton, bean definitions. For example, the LockM xi n introduction
interceptor from the Spring test suite, shown above, could be used in conjunction with an attribute-driven
pointcut to target a mixin, as shown here. We use the generic Def aul t Poi nt cut Advi sor, configured using
JavaBean properties:

<bean id="1ockM xi n" cl ass="org. spri ngfranmewor k. aop. LockM xi n"
scope="pr ot otype"/ >

<bean i d="1| ockabl eAdvi sor" cl ass="org. spri ngfranmewor k. aop. support. Def aul t Poi nt cut Advi sor"
scope="pr ot ot ype" >
<property name="pointcut" ref="nyAttributeAwarePointcut"/>
<property name="advi ce" ref="IockM xin"/>
</ bean>

Spring Framework (2.5.6) 191

Spring AOP APIs

<bean i d="anyBean" cl ass="anycl ass" ...

If the attribute aware pointcut matches any methods in the anyBean or other bean definitions, the mixin will be
applied. Note that both 1ockMxin and |ockabl eAdvisor definitions are prototypes. The
nyAttri but eAwar ePoi nt cut pointcut can be a singleton definition, as it doesn't hold state for individual
advised objects.

7.10. Using TargetSources

Spring offers the concept of a TargetSource, expressed in the org. spri ngf ranmewor k. aop. Tar get Sour ce
interface. This interface is responsible for returning the "target object” implementing the join point. The
Tar get Sour ce implementation is asked for a target instance each time the AOP proxy handles a method
invocation.

Developers using Spring AOP don't normally need to work directly with TargetSources, but this provides a
powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a pooling
TargetSource can return a different target instance for each invocation, using a pool to manage instances.

If you do not specify a TargetSource, a default implementation is used that wraps a local object. The same
target is returned for each invocation (as you would expect).

Let'slook at the standard target sources provided with Spring, and how you can use them.
Tip
"9
When using a custom target source, your target will usually need to be a prototype rather than a
singleton bean definition. This allows Spring to create a new target instance when required.

7.10.1. Hot swappable target sources

The org. springf ramewor k. aop. t ar get . Hot Swappabl eTar get Sour ce exists to alow the target of an AOP
proxy to be switched while allowing callers to keep their referencesto it.

Changing the target source's target takes effect immediately. The Hot Swappabl eTar get Sour ce IS threadsafe.

Y ou can change the target viathe swap() method on HotSwappableTargetSource as follows:

Hot Swappabl eTar get Sour ce swapper =
(Hot Swappabl eTar get Sour ce) beanFact ory. get Bean("swapper");
Obj ect ol dTarget = swapper.swap(newTarget);

The XML definitions required ook as follows:

<bean id="initial Target" class="myconpany.d dTarget"/>

<bean i d="swapper" cl ass="org. springfranmework. aop.target. Hot Swappabl eTar get Sour ce" >
<constructor-arg ref="initial Target"/>
</ bean>

<bean i d="swappabl e" cl ass="org. spri ngfranewor k. aop. f ranewor k. ProxyFact or yBean" >
<property nanme="t ar get Sour ce" ref="swapper"/>

Spring Framework (2.5.6) 192

Spring AOP APIs

</ bean>

The above swap() call changes the target of the swappable bean. Clients who hold a reference to that bean will
be unaware of the change, but will immediately start hitting the new target.

Although this example doesn't add any advice - and it's not necessary to add advice to use a Tar get Sour ce - Of
course any Tar get Sour ce can be used in conjunction with arbitrary advice.

7.10.2. Pooling target sources

Using a pooling target source provides a similar programming model to statel ess session EJBs, in which a pool
of identical instances is maintained, with method invocations going to free objectsin the pool.

A crucia difference between Spring pooling and SLSB pooling is that Spring pooling can be applied to any
POJO. Aswith Spring in general, this service can be applied in a non-invasive way.

Spring provides out-of-the-box support for Jakarta Commons Pool 1.3, which provides afairly efficient pooling
implementation. Y ou'll need the commons-pool Jar on your application's classpath to use this feature. It's also
possible to subclass or g. spri ngf r amewor k. aop. t ar get . Abst ract Pool i ngTar get Sour ce t0 support any other
pooling API.

Sample configuration is shown below:

<bean i d="busi nessObj ect Target" cl ass="com nyconpany. MyBusi nessObj ect "
scope="pr ot ot ype" >
... properties omtted
</ bean>

<bean i d="pool Tar get Sour ce" cl ass="org. spri ngfranmewor k. aop. t ar get . CommonsPool Tar get Sour ce" >
<property nanme="t ar get BeanNane" val ue="busi nessQbj ect Target"/>
<property name="nmaxSi ze" val ue="25"/>

</ bean>

<bean i d="busi nessObj ect" cl ass="org. spri ngfranmework. aop. f ramewor k. Pr oxyFact or yBean" >
<property nanme="t ar get Sour ce" ref="pool Target Source"/>
<property name="interceptorNanes" val ue="nylnterceptor"/>

</ bean>

Note that the target object - "businessObjectTarget" in the example - must be a prototype. This allows the
Pool i ngTar get Sour ce implementation to create new instances of the target to grow the pool as necessary. See
the havadoc for Abstract Pool i ngTar get Sour ce and the concrete subclass you wish to use for information
about its properties: "maxSize" isthe most basic, and always guaranteed to be present.

In this case, "mylnterceptor” is the name of an interceptor that would need to be defined in the same 10C
context. However, it isn't necessary to specify interceptors to use pooling. If you want only pooling, and no
other advice, don't set the interceptorNames property at all.

It's possible to configure Spring so as to be able to cast any pooled object to the
org. springframewor k. aop. t ar get . Pool i ngConfig interface, which exposes information about the
configuration and current size of the pool through an introduction. Y ou'll need to define an advisor like this:

<bean i d="pool Confi gAdvi sor" cl ass="org. spri ngfranework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >

<property nanme="t arget Cbj ect" ref="pool Target Source"/>
<property nanme="t ar get Met hod" val ue="get Pool i ngConfi gM xi n"/ >
</ bean>

Spring Framework (2.5.6) 193

Spring AOP APIs

This advisor is obtained by calling a convenience method on the Abst r act Pool i ngTar get Sour ce class, hence
the use of MethodlnvokingFactoryBean. This advisor's name (" pool ConfigAdvisor" here) must be in the list of
interceptors namesin the ProxyFactoryBean exposing the pooled object.

The cast will ook as follows:

Pool i ngConfi g conf = (PoolingConfig) beanFactory. get Bean("busi nessObject");
Systemout. println("Max pool size is " + conf.get MaxSi ze());

Note

Pooling stateless service objects is not usually necessary. We don't believe it should be the default
choice, as most stateless objects are naturally thread safe, and instance pooling is problematic if
resources are cached.

Simpler pooling is available using autoproxying. It's possible to set the TargetSources used by any autoproxy
creator.

7.10.3. Prototype target sources

Setting up a "prototype" target source is similar to a pooling TargetSource. In this case, a new instance of the
target will be created on every method invocation. Although the cost of creating a new object isn't high in a
modern JVM, the cost of wiring up the new object (satisfying its 1oC dependencies) may be more expensive.
Thus you shouldn't use this approach without very good reason.

To do this, you could modify the pool Tar get Sour ce definition shown above as follows. (I've also changed the
name, for clarity.)

<bean i d="prot ot ypeTar get Source" cl ass="org. spri ngfranmewor k. aop. target. Prot ot ypeTar get Sour ce" >
<property name="t ar get BeanNanme" ref="busi nessObj ect Target"/>
</ bean>

There's only one property: the name of the target bean. Inheritance is used in the TargetSource implementations
to ensure consistent naming. As with the pooling target source, the target bean must be a prototype bean
definition.

7.10.4. ThreadLocal target sources

ThreadLocal target sources are useful if you need an object to be created for each incoming request (per thread
that is). The concept of a ThreadLocal provide a JIDK-wide facility to transparently store resource alongside a
thread. Setting up a Thr eadLocal Tar get Sour ce iS pretty much the same as was explained for the other types of
target source:

<bean i d="t hr eadl ocal Tar get Source" cl ass="org. spri ngfranework. aop. target. ThreadLocal Tar get Sour ce" >
<property name="t ar get BeanNanme" val ue="busi nessbj ect Target"/>
</ bean>

Note

Threadl ocals come with serious issues (potentially resulting in memory leaks) when incorrectly
using them in a multi-threaded and multi-classloader environments. One should always consider
wrapping athreadlocal in some other class and never directly use the Thr eadLocal itself (except of

Spring Framework (2.5.6) 194

Spring AOP APIs

course in the wrapper class). Also, one should aways remember to correctly set and unset (where
the latter simply involved a call to ThreadLocal . set (nul 1)) the resource local to the thread.
Unsetting should be done in any case since not unsetting it might result in problematic behavior.
Spring's ThreadL ocal support does this for you and should always be considered in favor of using
ThreadL ocals without other proper handling code.

7.11. Defining new Advi ce types

Spring AOP is designed to be extensible. While the interception implementation strategy is presently used
internally, it is possible to support arbitrary advice types in addition to the out-of-the-box interception around
advice, before, throws advice and after returning advice.

The or g. springframewor k. aop. f ramewor k. adapt er package is an SPI package alowing support for new
custom advice types to be added without changing the core framework. The only constraint on a custom Advi ce
typeisthat it must implement the or g. aopal | i ance. aop. Advi ce tag interface.

Please refer to the or g. spri ngf ramewor k. aop. f r amewor k. adapt er package's Javadocs for further information.

7.12. Further resources

Please refer to the Spring sample applications for further examples of Spring AOP:
» The JPetStore's default configuration illustrates the use of the Tr ansact i onPr oxyFact or yBean for declarative
transaction management.

 The /attributes directory of the JPetStore illustrates the use of attribute-driven declarative transaction
management.

Spring Framework (2.5.6) 195

Chapter 8. Testing

8.1. Introduction

The Spring team considers developer testing to be an absolutely integral part of enterprise software
development. A thorough treatment of testing in the enterprise is beyond the scope of this chapter; rather, the
focus here is on the value-add that the adoption of the [oC principle can bring to unit testing and on the benefits
that the Spring Framework provides in integration testing.

8.2. Unit testing

One of the main benefits of Dependency Injection is that your code should really depend far less on the
container than in traditional J2EE development. The POJOs that comprise your application should be testable in
JUnit or TestNG tests, with objects simply instantiated using the new operator, without Spring or any other
container. You can use mock objects (in conjunction with many other valuable testing techniques) to test your
code in isolation. If you follow the architecture recommendations around Spring you will find that the resulting
clean layering and componentization of your codebase will naturally facilitate easier unit testing. For example,
you will be able to test service layer objects by stubbing or mocking DAO or Repository interfaces, without any
need to access persistent data while running unit tests.

True unit tests typicaly will run extremely quickly, as there is no runtime infrastructure to set up, whether
application server, database, ORM tool, or whatever. Thus emphasizing true unit tests as part of your
development methodology will boost your productivity. The upshot of this is that you often do not need this
section of the testing chapter to help you write effective unit tests for your 10C-based applications. For certain
unit testing scenarios, however, the Spring Framework provides the following mock objects and testing support
classes.

8.2.1. Mock objects

8.2.1.1. INDI

The org. spri ngf ramewor k. nock. j ndi package contains an implementation of the JINDI SPI, which is useful
for setting up a simple JNDI environment for test suites or stand-alone applications. If, for example, JDBC
Dat aSour ceS get bound to the same JNDI names in test code as within a J2EE container, both application code
and configuration can be reused in testing scenarios without modification.

8.2.1.2. Servlet API

The org. spri ngf ramewor k. nock. web package contains a comprehensive set of Servlet APl mock objects,
targeted at usage with Spring's Web MVC framework, which are useful for testing web contexts and
controllers. These mock objects are generally more convenient to use than dynamic mock objects (e.g.,
EasyMock) or existing Servlet APl mock objects (e.g., MockObjects).

8.2.1.3. Portlet API

The or g. spri ngf ramewor k. nock. web. port | et package contains a set of Portlet APl mock objects, targeted at
usage with Spring's Portlet MV C framework.

Spring Framework (2.5.6) 196

http://www.easymock.org
http://www.mockobjects.com

Testing

8.2.2. Unit testing support classes

8.2.2.1. General utilities

The org. springframework.test.util package contains ReflectionTestUils, which is a collection of
reflection-based utility methods for use in unit and integration testing scenarios in which the developer would
benefit from being able to set a non-public field or invoke a non-public setter method when testing
application code involving, for example:

¢ ORM frameworks such as JPA and Hibernate which condone the usage of pri vat e or prot ect ed field access
as opposed to publ i ¢ setter methods for properties in adomain entity

» Spring's support for annotations such as @ut owi r ed and @esour ce Which provides dependency injection for
privat e Or prot ect ed fields, setter methods, and configuration methods

8.2.2.2. Spring MVC

The org. springframework. test.web package contains Abstract Model AndVi ewTests, Which serves as a
convenient base class for JUnit 3.8 based unit tests dealing with Spring MV C Mdel AndVi ew objects. When
developing against Java 1.4 and higher (e.g., in combination with JUnit 4+, TestNG, etc.), you have the option
of using the Mdel Andvi ewassert class (in the same package) to test your Model AndVi ew related functionality.

Tip: depending on your testing environment, either extend AbstractMdel AndVi ewTests OF USe
Mbdel AndVi ewAssert directly and then use MockHtt pServl et Request, MockHtt pSession, etc. from the
org. springframewor k. nock. web packageto test your Spring MV C Control | er S.

8.3. Integration testing

8.3.1. Overview

It isimportant to be able to perform some integration testing without requiring deployment to your application
server or connecting to other enterprise infrastructure. Thiswill enable you to test things such as:

» The correct wiring of your Spring |0C container contexts.

» Data access using JDBC or an ORM tool. This would include such things as the correctness of SQL
statements, Hibernate queries, JPA entity mappings, etc.

The Spring Framework provides first class support for integration testing in the form of the classes that are
packaged in the spring-test.jar library. In this library, you will find the org. spri ngfranework. t est
package which contains valuable classes for integration testing using a Spring container, while at the same time
not being reliant on an application server or other deployment environment. Such tests will be slower to run
than unit tests but much faster to run than the equivalent Cactus tests or remote tests relying on deployment to
an application server.

Prior to the 2.5 release of the framework, Spring provided integration testing support specific to JUnit 3.8. As
of the 2.5 release, Spring offers support for unit and integration testing in the form of the Spring TestContext
Framework, which is agnostic of the actual testing framework in use, thus allowing instrumentation of tests in
various environments including JUnit 3.8, JUnit 4.4, TestNG, etc. Note that the Soring TestContext Framework
requires Java 5+.

Spring Framework (2.5.6) 197

Testing

8.3.2. Which support framework to use

The Spring team recommends using the Spring TestContext Framework for al new unit testing or integration
testing involving Appl i cat i onCont ext S OF requiring transactional test fixtures; however, if you are developing
in apre-Java 5 environment, you will need to continue to use the JUnit 3.8 legacy support. In addition, explicit
integration testing support for JPA which relies on shadow class loading for JPA class instrumentation is
currently only available with the JUnit 3.8 legacy support. If you are testing against a JPA provider which does
not require class instrumentation, however, it is recommended that you use the TestContext framework.

8.3.3. Common goals

The Spring integration testing support frameworks share several common goals, including:

Spring 10C container caching between test execution.

» Dependency Injection of test fixture instances (thisis nice).

» Transaction management appropriate to integration testing (thisis even nicer).

 Spring-specific support classes that are really useful when writing integration tests.

The following sections outline each of these goals and provide direct links to information specific to the
particular support frameworks.

8.3.3.1. Context management and caching

Spring integration testing support frameworks provide consistent loading of Spring Appl i cati onCont ext S and
caching of those contexts. Support for the caching of loaded contexts is important, because if you are working
on alarge project, startup time may become an issue - not because of the overhead of Spring itself, but because
the aobjects instantiated by the Spring container will themselves take time to instantiate. For example, a project
with 50-100 Hibernate mapping files might take 10-20 seconds to load the mapping files, and incurring that
cost before running every single test in every single test fixture will lead to slower overall test runs that could
reduce productivity.

Test classes will generally provide an array containing the resource locations of XML configuration metadata -
typically on the classpath - used to configure the application. This will be the same, or nearly the same, as the
list of configuration locations specified in web. xm or other deployment configuration.

By default, once loaded, the configured Appl i cati onCont ext will be reused for each test. Thus the setup cost
will be incurred only once (per test fixture), and subsequent test execution will be much faster. In the unlikely
case that a test may 'dirty' the application context, requiring reloading - for example, by changing a bean
definition or the state of an application object - Spring's testing support provides mechanisms to cause the test
fixture to rel oad the configurations and rebuild the application context before executing the next test.

Context management and caching with:

* JUnit 3.8 legacy support

¢ The TestContext Framework

8.3.3.2. Dependency Injection of test fixtures

Spring Framework (2.5.6) 198

Testing

When Spring integration testing support frameworks load your application context, they can optionally
configure instances of your test classes via Dependency Injection. This provides a convenient mechanism for
setting up test fixtures using pre-configured beans from your application context. A strong benefit here is that
you can reuse application contexts across various testing scenarios (e.g., for configuring Spring-managed object
graphs, transactional proxies, bat aSour ces, €tc.), thus avoiding the need to duplicate complex test fixture set up
for individual test cases.

As an example, consider the scenario where we have a class, Hi ber nat eTi t | eDao, that performs data access
logic for say, the Ti t | e domain object. We want to write integration tests that test al of the following areas:

e The Spring configuration: basically, is everything related to the configuration of the Hi ber nat eTi t | eDao
bean correct and present?

« The Hibernate mapping file configuration: is everything mapped correctly and are the correct lazy-loading
settings in place?

e Thelogic of the Hi ber nat eTi t | eDao: does the configured instance of this class perform as anticipated?

Dependency Injection of test fixtures with:

* JUnit 3.8 legacy support

¢ The TestContext Framework

8.3.3.3. Transaction management

One common issue in tests that access a real database is their affect on the state of the persistence store. Even
when you're using a development database, changes to the state may affect future tests. Also, many operations -
such as inserting to or modifying persistent data - cannot be performed (or verified) outside a transaction.

The Spring integration testing support frameworks meet this need. By default, they create and roll back a
transaction for each test. You simply write code that can assume the existence of a transaction. If you call
transactionally proxied objects in your tests, they will behave correctly, according to their transactional
semantics. In addition, if test methods del ete the contents of selected tables while running within a transaction,
the transaction will roll back by default, and the database will return to its state prior to execution of the test.
Transactional support is provided to your test class via a Pl at f or nilr ansact i onManager bean defined in the
test's application context.

If you want a transaction to commit - unusual, but occasionally useful when you want a particular test to
populate or modify the database - the Spring integration testing support frameworks can be instructed to cause
the transaction to commit instead of roll back either by calling an inherited hook-method or by declaring a
specific annotation.

Transaction management with:

+ JUnit 3.8 legacy support

* The TestContext Framework

8.3.3.4. Integration testing support classes

The Spring integration testing support frameworks provide several abstract support classes that can simplify

Spring Framework (2.5.6) 199

Testing

writing integration tests. These base test classes provide well defined hooks into the testing framework as well
as convenient instance variables and methods, allowing access to such things as:

» The Appl i cati onCont ext : useful for performing explicit bean lookups or testing the state of the context as a
whole.

* A JdbcTenpl ate Or Sinpl eJdbcTenpl ate: useful for querying to confirm state. For example, you might
query before and after testing application code that creates an object and persists it using an ORM tooal, to
verify that the data appears in the database. (Spring will ensure that the query runs in the scope of the same
transaction.) Y ou will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example
using thef I ush() method on Hibernate's Sessi on interface.

Often you will provide an application-wide superclass for integration tests that provides further useful instance
variables used in many tests.

Support classesfor:

* JUnit 3.8 legacy support

¢ The TestContext Framework

8.3.4. JDBC testing support

The org. springframework. test.jdbc package contains Sinpl eJdbcTest Utils, which is a Java-5-based
collection of JDBC related utility functions intended to simplify standard database testing scenarios. Note that
Abst ract Transacti onal JUni t 38Spri ngCont ext Tests, Abstract Transacti onal JUnit4Spri ngCont ext Tests,

and Abstract Transacti onal Test NGSpri ngCont ext Tests provide convenience methods which delegate to
Si npl eJdbcTest Ui | s internally.

8.3.5. Common annotations

The Spring Framework provides a common set of Spring-specific annotations in the
org. springframework. test. annot ati on package that you can use in your testing if you are developing
against Java 5 or greater.

e @fProfileVal ue

Indicates that the annotated test is enabled for a specific testing environment. If the configured
Profil eval ueSource returns a matching val ue for the provided nane, the test will be enabled. This
annotation can be applied to an entire class or individual methods.

@fProfil eval ue(nane="j ava. vendor", val ue="Sun M crosystens Inc.")
public void testProcessWi chRunsOnl yOnSunJdvn() {

/1 sone logic that should run only on Java VMs from Sun M crosystens
}

Alternatively @f Profil eval ue may be configured with a list of val ues (with OR semantics) to achieve
TestNG-like support for test groups in a JUnit environment. Consider the following example:

@fProfil eVal ue(nane="t est-groups"”, values={"unit-tests", "integration-tests"})
public void testProcessWi chRunsForUnit Orl ntegrationTest Groups() {

/1 sone logic that should run only for unit and integration test groups
}

Spring Framework (2.5.6) 200

Testing

e @rofileVal ueSourceConfiguration

Class-level annotation which is used to specify what type of Profi | eval ueSour ce t0 use when retrieving
profile values configured via the @f Profi | eval ue annotation. If @ ofi | eval ueSour ceConfi guration iS
not declared for atest, Syst enProf i | eval ueSour ce Will be used by default.

@rof i | eVal ueSour ceConf i gur ati on(Cust onPr of i | eVal ueSour ce. cl ass)
public class CustonProfil eVal ueSourceTests {

/1 class body. ..
}

* @irtiesContext

The presence of this annotation on a test method indicates that the underlying Spring container is 'dirtied’
during the execution of the test method, and thus must be rebuilt after the test method finishes execution
(regardless of whether the test passed or not).

@i rtiesCont ext
public void testProcessWichDirti esAppCtx() {

/1 sone logic that results in the Spring container being dirtied
}

* @xpect edException

Indicates that the annotated test method is expected to throw an exception during execution. The type of the
expected exception is provided in the annotation, and if an instance of the exception is thrown during the test
method execution then the test passes. Likewise if an instance of the exception is not thrown during the test
method execution then the test fails.

@xpect edExcept i on(SonmeBusi nessExcepti on. cl ass)
public void testProcessRai nyDayScenario() {

/1 some logic that should result in an Exception being thrown
}

* @i ned

Indicates that the annotated test method has to finish execution in a specified time period (in milliseconds). If
the text execution time takes longer than the specified time period, the test fails.

Note that the time period includes execution of the test method itself, any repetitions of the test (see
@repeat), aswell asany set up or tear down of the test fixture.

@i med(m | 1is=1000)
public void testProcessWthOneSecondTi meout () {

/1 sonme logic that should not take |onger than 1 second to execute
}

* @Repeat

Indicates that the annotated test method must be executed repeatedly. The number of times that the test
method is to be executed is specified in the annotation.

Note that the scope of execution to be repeated includes execution of the test method itself as well as any set
up or tear down of the test fixture.

@Repeat (10)
public void testProcessRepeatedl y() {
...

Spring Framework (2.5.6) 201

Testing

* @Rol | back

Indicates whether or not the transaction for the annotated test method should be rolled back after the test
method has completed. If true, the transaction will be rolled back; otherwise, the transaction will be
committed. Use @rol | back to override the default rollback flag configured at the class level.

@Rol | back(fal se)

public void testProcessWthoutRol |l back() {
...

}

® @\ot Transact i onal

The presence of this annotation indicates that the annotated test method must not execute in a transactional
context.

@\ot Tr ansact i onal

public void testProcessWthout Transaction() {
...

}

Annotation support for:

» JUnit 3.8 legacy support: all common annotations listed above are supported but must be used in conjunction
with Abst ract Annot at i onAwar eTr ansact i onal Test s in order for the presence of these annotations to have
any effect.

» The TestContext Framework: supports all of the common annotations listed above while providing additional
TestContext-specific and transactional annotations (e.g., @ont ext Confi guration, @BeforeTransaction,
etc.). Note, however, that some of the common annotations are only supported when used in conjunction
with JUnit (e.g., with the SpringJUnit4ClassRunner or the JUnit 3.8 and JUnit 4.4 base test classes). Refer to
the documentation in the TestContext Framework section for further details.

8.3.6. JUnit 3.8 legacy support

Spring's JUnit 3.8 legacy support is comprised of the classes found in the or g. spri ngf r amewor k. t est package.
This package provides valuable JUnit Test Case superclasses which can be extended for out-of-container
integration tests involving Spring Appl i cati onCont ext S OF requiring transactional support at the test method
level.

8.3.6.1. Context management and caching

Abst r act Si ngl eSpri ngCont ext Tests provides context management and caching support for JUnit 3.8 based
test cases and exposes a prot ect ed method that subclasses can override to provide the location of context
definition files:

protected String[] getConfiglLocations()

Implementations of this method must provide an array containing the resource locations of XML configuration
metadata - typically on the classpath - used to configure the application. This will be the same, or nearly the

Spring Framework (2.5.6) 202

Testing

same, as the list of configuration locations specified in web. xmi or other deployment configuration. As an
alternative you may choose to override one of the following. See the respective JavaDoc for further details.

protected String[] getConfigPaths()

protected String get ConfigPath()

By default, once loaded, the configuration file set will be reused for each test case. Thus the setup cost will be
incurred only once (per test fixture), and subsequent test execution will be much faster. In the unlikely case that
atest may 'dirty’ the application context, requiring reloading - for example, by changing a bean definition or the
state of an application object - you can call theset bi rty() method on Abst ract Si ngl eSpri ngCont ext Test s t0
cause the test fixture to reload the configurations and rebuild the application context before executing the next
test case. As an dternative, if you are developing against Java 5 or greater and extending
Abst r act Annot at i onAwar eTr ansact i onal Test s, YOu may annotate your test method with @i rti esCont ext to
achieve the same effect.

8.3.6.2. Dependency Injection of test fixtures

When Abst r act Dependencyl nj ecti onSpri ngCont ext Tests (and subclasses) load your application context,
they can optionally configure instances of your test classes by Setter Injection. All you need to do is to define
instance variables and the corresponding setter methods. Abst r act Dependency! nj ect i onSpri ngCont ext Test s
will automatically locate the corresponding object in the set of configuration files specified in the
get Confi gLocati ons() method.

Consider the scenario where we have a class, Hi ber nat eTi t | eDao (as outlined in the Common goals section).
Let's look at a JUnit 3.8 based implementation of the test class itself (we will look at the configuration
immediately afterwards).

public final class Hi bernateTitl eDaoTests extends Abstract Dependencyl njecti onSpri ngCont ext Tests {

/1 this instance will be (autonmatically) dependency injected
private Hi bernateTitl eDao titleDao;

// a setter method to enable DI of the 'titleDao' instance variable

public void setTitl eDao(H bernateTitleDao titleDao) {
this.titleDao = titl eDao;

}

public void testLoadTitle() throws Exception {
Title title = this.titleDao.loadTitle(new Long(10));
assertNotNul | (title);

}

/1 specifies the Spring configuration to load for this test fixture
protected String[] getConfiglLocations() {

return new String[] { "classpath:conifoo/daos.xm" };
}

The file referenced by the get Confi gLocati ons() method (i.e., "cl asspat h: cont f oo/ daos. xm ") looks like
this:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd" >

<l-- this bean will be injected into the HbernateTitleDaoTests cl ass -->
<bean i d="titl eDao" cl ass="com fo0o0. dao. hi bernate. H bernateTi t| eDao" >

Spring Framework (2.5.6) 203

Testing

<property name="sessi onFactory" ref="sessionFactory"/>
</ bean>

<bean i d="sessi onFactory" cl ass="org. spri ngframework. orm hi ber nat e3. Local Sessi onFact or yBean" >
<!-- dependencies elided for clarity -->
</ bean>

</ beans>

The Abst ract Dependencyl nj ecti onSpri ngCont ext Tests Classes uses autowire by type. Thus if you have
multiple bean definitions of the same type, you cannot rely on this approach for those particular beans. In that
case, you can use the inherited appl i cati onCont ext instance variable and perform explicit lookups using (for
example) acall to appl i cati onCont ext . get Bean("tit| eDao").

If you don't want dependency injection applied to your test cases, ssmply don't declare any public Setter
methods. Alternatively, you can extend Abst ract Spri ngCont ext Test s - the root of the JUnit 3.8 integration
testing support class hierarchy in the org. springframework.test package - which merely contains
convenience methods to load Spring contexts and performs no Dependency Injection of the test fixture.

8.3.6.2.1. Field level injection

If, for whatever reason, you don't fancy having setter methods in your test fixtures, Spring can inject
dependencies into protected fields. Find below a reworking of the previous example to use field level
injection (the Spring XML configuration does not need to change, merely the test fixture).

public final class Hi bernateTitl eDaoTests extends Abstract Dependencyl njecti onSpri ngCont ext Tests {

public H bernateTitl eDaoTests() {
/1 switch on field | evel injection
set Popul at ePr ot ect edVari abl es(true);

}

/1 this instance will be (automatically) dependency injected
protected HibernateTitl eDao titleDao;

public void testLoadTitle() throws Exception {
Title title = this.titleDao.|oadTitle(new Long(10));
assertNotNul | (title);

}

/| specifies the Spring configuration to load for this test fixture
protected String[] getConfiglLocations() {

return new String[] { "classpath:conf foo/daos.xm" };
}

In the case of field injection, there is no autowiring going on: the name of apr ot ect ed instance variable is used
as the lookup bean name in the configured Spring container.

8.3.6.3. Transaction management

Abstract Transact i onal Spri ngCont ext Test s depends on aPl at f or mir ansact i onManager bean being defined
in the application context. The name doesn't matter due to the use of autowire by type.

Typicaly you will extend the subclass, Abstract Transact i onal Dat aSour ceSpri ngCont ext Tests. This class
also requires that a Dat aSour ce bean definition - again, with any name - be present in the application context. It
creates a JdbcTenpl at e instance variable, that is useful for convenient querying, and provides handy methods
to delete the contents of selected tables (remember that the transaction will roll back by default, so thisis safe
to do).

If you want a transaction to commit programmatically - unusual, but occasionally useful when you want a

Spring Framework (2.5.6) 204

Testing

particular test to populate the database - you can cal the set Conplete() method inherited from
Abstract Transact i onal Spri ngCont ext Tests. This will cause the transaction to commit instead of roll back.
As an dternative, if you are developing against Java 5 or greater and extending
Abst r act Annot at i onAwar eTr ansact i onal Tests, you may annotate your test method with @rol | back(f al se)
to achieve the same effect through configuration.

There is adso the convenient ability to end a transaction before the test case ends, by calling the
endTransacti on() method. Thiswill roll back the transaction by default and commit it only if set Conpl et e()
had previously been called. This functionality is useful if you want to test the behavior of ‘disconnected' data
objects, such as Hibernate-mapped entities that will be used in a web or remoting tier outside a transaction.
Often, lazy loading errors are discovered only through Ul testing; if you call endTr ansacti on() you can ensure
correct operation of the Ul through your JUnit test suite.

8.3.6.4. JUnit 3.8 legacy support classes

When you extend the Abst ract Tr ansact i onal Dat aSour ceSpri ngCont ext Test s class you will have access to
the following pr ot ect ed instance variables:

e applicationCont ext (a Conf i gur abl eAppl i cati onCont ext): inherited from the
Abst ract Si ngl eSpri ngCont ext Test s superclass. Use thisto perform explicit bean lookup or to test the state
of the context as awhole.

e jdbcTenpl ate: inherited from Abstract Transacti onal Dat aSour ceSpri ngCont ext Tests. Useful for
querying to confirm state. For example, you might query before and after testing application code that creates
an object and persists it using an ORM tool, to verify that the data appears in the database. (Spring will
ensure that the query runs in the scope of the same transaction.) You will need to tell your ORM tool to
flush' its changes for this to work correctly, for example using the f1 ush() method on Hibernate's Sessi on
interface.

8.3.6.5. Java 5+ specific support

8.3.6.5.1. Annotation aware transactional tests

In addition to the aforementioned common annotations, the or g. spri ngf ramewor k. t est . annot at i on package
also contains an abst ract JUnit Test Case class which provides annotation-driven integration testing support.

The Abst ract Annot at i onAwar eTr ansact i onal Tests class extends
Abstract Transact i onal Dat aSour ceSpri ngCont ext Test s and makes text fixtures, which extend it, aware of a
number of (Spring-specific) annotations. Abstract Annot at i onAwar eTr ansact i onal Tests supports all
annotations listed in the common annotations section as well as Spring's @ ansacti onal annotation for
configuring explicit transactional semantics.

8.3.6.5.2. JPA support classes

The or g. spri ngframewor k. t est . j pa package provides support classes for tests based on the Java Persistence
API (JPA).

e Abstract JpaTests iS a convenient support class for JPA-related tests, which offers the same contract as
Abstract Transact i onal Dat aSour ceSpri ngCont ext Tests and equaly good performance, even when
performing the instrumentation required by the JPA specification. Exposes an Ent i t yManager Fact ory and a
shared EntityManager. Requires an EntityManager Factory to be injected, plus the DataSource and
JpaTransact i onManager through the superclass.

Spring Framework (2.5.6) 205

Testing

e Abstract Aspectj JpaTest s iSasubclass of Abst ract JpaTest s that activates AspectJ load-time weaving and
alows the ability to specify a custom location for AspectJsaop. xni file.

8.3.7. Spring TestContext Framework

The Soring Test Cont ext Framework (located in the or g. spri ngframewor k. t est . cont ext package) provides
generic, annotation-driven unit and integration testing support that is agnostic of the testing framework in use,
for example JUnit 3.8, JUnit 4.4, TestNG 5.5, etc. The TestContext framework also places a great deal of
importance on convention over configuration with reasonable defaults that can be overridden via
annotation-based configuration.

In addition to generic testing infrastructure, the TestContext framework provides explicit support for JUnit 3.8,
JUnit 4.4, and TestNG 5.5 in the form of abst ract support classes. For JUnit 4.4, the framework also provides
a custom Runner which alows one to write test classes that are not required to extend a particular class
hierarchy.

The following section provides an overview of the internals of the TestContext framework. If you are only
interested in using the framework and not necessarily interested in extending it with your own custom listeners,
feel free to skip ahead to the configuration (context management, dependency injection, transaction
management), support classes, and annotation support sections.

8.3.7.1. Key abstractions

The core of the framework consists of the Test Context and Test Cont ext Manager classes and the
Test Executi onLi stener interface. A Test Cont ext Manager IS created on a per-test basis. The
Test Cont ext Manager in turn manages a Test Cont ext Which is responsible for holding the context of the
current test. The Test Cont ext Manager IS aso responsible for updating the state of the Test Cont ext as the test
progresses and delegating to Test Executi onLi st ener S, which instrument the actual test execution (e.g.,
providing dependency injection, managing transactions, etc.). Consult the JavaDoc and the Spring test suite for
further information and examples of various configurations.

e Test Cont ext : encapsulates the context in which atest is executed, agnostic of the actual testing framework
in use.

e Test Cont ext Manager : the main entry point into the Spring TestContext Framework, which is responsible for
managing a single Test Context and signaling events to al registered Test Executi onLi steners at well
defined test execution points: test instance preparation, prior to any before methods of a particular testing
framework, and after any after methods of a particular testing framework.

* TestExecutionLi stener: defines a listener API for reacting to test execution events published by the
Test Cont ext Manager With which the listener is registered.

Spring provides three Test Execut i onLi st ener implementations which are configured by default (via the
@est Executi onLi st eners annotation): Dependencyl nj ect i onTest Execut i onLi st ener,
Di rti esCont ext Test Executi onLi stener, and Transacti onal Test Executi onLi stener, Which provide
support for dependency injection of the test instance, handling of the @i rti esContext annotation, and
transactional test execution support with default rollback semantics, respectively.

The following three sections explain how to configure the Test Cont ext framework via annotations and provide
working examples of how to actually write unit and integration tests with the framework.

8.3.7.2. Context management and caching

Spring Framework (2.5.6) 206

Testing

Each Test Context provides context management and caching support for the test instance for which it is
responsible. Test instances do not automatically receive access to the configured ApplicationCont ext;
however, if a test class implements the ApplicationContextAware interface, a reference to the

Appl i cat i onCont ext will be supplied to the test instance (provided the
Dependencyl nj ecti onTest Execut i onLi stener has been configured, which is the default). Note that
Abst ract JUni t 38Spri ngCont ext Test s, Abstract JUni t 4Spri ngCont ext Test s, and

Abst ract Test NGSpri ngCont ext Test s aready implement Appl i cati onCont ext Aware and therefore provide
this functionality out-of-the-box.

In contrast to the JUnit 3.8 legacy support, test classes which use the TestContext framework do not need to
override any protected instance methods to configure their application context. Rather, configuration is
achieved merely by declaring the @ont ext Confi gur ati on annotation at the class level. If your test class does
not explicitly declare any application context resource |ocations, the configured ContextLoader will
determine how and whether or not to load a context from a default set of locations. For example,
Gener i cXnl Cont ext Loader - Which isthe default cont ext Loader - will generate a default location based on the
name of the test class. If your class is hamed com exanpl e. MyTest , Gener i cXnl Cont ext Loader Will load your
application context from " cl asspat h: / coni exanpl e/ MyTest - cont ext . xni .

package com exanpl e;

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
/1 ApplicationContext will be | oaded from "classpath:/con exanpl e/ MyTest - cont ext . xm "
@Cont ext Confi guration
public class MyTest {
/'l class body...
}

If the default location does not suit your needs, you are free to explicitly configure the | ocat i ons attribute of
@ont ext Confi guration (Ssee code listing below) with an array containing the resource locations of XML
configuration metadata (assuming an XML-capable Cont ext Loader has been configured) - typically on the
classpath - used to configure the application. This will be the same, or nearly the same, as the list of
configuration locations specified in web. xni or other deployment configuration. As an alternative you may
choose to implement and configure your own custom Cont ext Loader .

@unW t h(Spri ngJUni t 4Cl assRunner. cl ass)
/1 ApplicationContext will be | oaded from "/applicationContext.xm" and "/applicationContext-test.xm "
/1l in the root of the classpath
@Cont ext Confi guration(l ocations={"/applicationContext.xm ", "/applicationContext-test.xm"})
public class MyTest {

/1 class body. ..

}

@ont ext Confi guration alSO supports a boolean i nheri t Locati ons attribute which denotes whether or not
resource locations from superclasses should be inherited. The default value is t rue, which means that an
annotated class will inherit the resource locations defined by an annotated superclass. Specifically, the resource
locations for an annotated class will be appended to the list of resource locations defined by an annotated
superclass. Thus, subclasses have the option of extending the list of resource locations. In the following
example, the ApplicationContext for ExtendedTest will be loaded from "/base-context.xml" and
"/extended-context.xml", in that order. Beans defined in "/extended-context.xml" may therefore override those
defined in "/base-context.xml".

@unW t h(Spri ngJUni t 4Cl assRunner. cl ass)
/1 ApplicationContext will be | oaded from "/base-context.xmi" in the root of the classpath
@Cont ext Confi guration(l ocations={"/base-context.xm"})
public class BaseTest {
/'l class body. ..
}

/1 ApplicationContext will be | oaded from "/base-context.xm" and "/extended-context.xni"

Spring Framework (2.5.6) 207

Testing

// in the root of the classpath
@Cont ext Confi guration(l ocati ons={"/extended-context.xm "})
public class ExtendedTest extends BaseTest {
/'l class body...
}

If i nheritLocations issettofal se, the resource locations for the annotated class will shadow and effectively
replace any resource locations defined by a superclass.

By default, once loaded, the configured Appl i cati onCont ext will be reused for each test. Thus the setup cost
will be incurred only once (per test fixture), and subsequent test execution will be much faster. In the unlikely
case that a test may dirty the application context, requiring reloading - for example, by changing a bean
definition or the state of an application object - you may annotate your test method with @i rti esCont ext
(assuming Di r t i esCont ext Test Execut i onLi st ener has been configured, which is the default) to cause the test
fixture to reload the configurations and rebuild the application context before executing the next test.

8.3.7.3. Dependency Injection of test fixtures

When you configure the Dependencyl nj ect i onTest Execut i onLi st ener - which is configured by default - via
the @est Execut i onLi st ener s annotation, the dependencies of your test instances will be injected from beans
in the application context you configured via @ont ext Confi gur ati on by Setter Injection, Field Injection, or
both, depending on which annotations you choose and whether you place them on setter methods or fields. For
consistency with annotation support in Spring 2.5, you may choose either Spring's @ut owi r ed annotation or
the @esource annotation from JSR 250. The semantics for both are consistent throughout the Spring
Framework. For example, if you prefer autowiring by type, annotate your setter methods or fields with
@ut owi r ed. On the other hand, if you prefer to have your dependencies injected by name, annotate your setter
methods or fields with @esour ce.

Tip
The TestContext framework does not instrument the manner in which atest instance is instantiated.
Thus the use of @ut owi r ed for constructors has no effect for test classes.

Since @ut owi red performs autowiring by type, if you have multiple bean definitions of the same type, you
cannot rely on this approach for those particular beans. In that case, you can use @esour ce for injection by
name. Alternatively, if your test class implements Appl i cati onCont ext Aware, You can directly access the
Appl i cationContext supplied to your test and perform an explicit lookup using (for example) a call to
appl i cati onCont ext. getBean("titl eDao").

If you don't want dependency injection applied to your test instances, simply don't annotate any fields or setter
methods with @ut owi red or @resource. Alternatively, you can disable dependency injection altogether by
explicitly configuring your class with @est Execut i onLi st eners and omitting
Dependencyl nj ect i onTest Execut i onLi st ener. cl ass from thelist of listeners.

Consider the scenario where we have a class, H ber nat eTi t | eDao (&s outlined in the common goals section).
First, let's look at a JUnit 4.4 based implementation of the test class itself which uses @ut owi red for field
injection (we will look at the application context configuration after all sample code listings). Note: The
dependency injection behavior in the following code listings is not in any way specific to JUnit 4.4. The same
DI techniques can be used in conjunction with any testing framework.

@RunW t h(Spri ngJUni t 4Cl assRunner. cl ass)

/] specifies the Spring configuration to load for this test fixture
@Cont ext Confi guration(l ocati ons={"daos.xm "})

public final class Hi bernateTitl eDaoTests {

// this instance will be dependency injected by type

Spring Framework (2.5.6) 208

Testing

@\ut owi r ed
private H bernateTitleDao titleDao;

public void testLoadTitle() throws Exception {
Title title = this.titleDao.loadTitle(new Long(10));
assertNotNul | (title);

Alternatively, we can configure the class to use @ut owi r ed for setter injection.

@unW t h(Spri ngJUni t 4Cl assRunner. cl ass)

/| specifies the Spring configuration to load for this test fixture
@Cont ext Confi guration(l ocati ons={"daos. xm "})

public final class HibernateTitleDaoTests {

/1 this instance will be dependency injected by type
private HibernateTitleDao titleDao;

@\ut owi r ed

public void setTitl eDao(Hi bernateTitleDao titleDao) {
this.titleDao = titl eDao;

}

public void testLoadTitle() throws Exception {
Title title = this.titleDao.loadTitle(new Long(10));
assertNotNul | (title);

Now let's take alook at an example using @esour ce for field injection.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

/| specifies the Spring configuration to load for this test fixture
@Cont ext Confi guration(l ocati ons={"daos. xm "})

public final class Hi bernateTitl eDaoTests {

// this instance will be dependency injected by nane

@Resour ce
private Hi bernateTitl eDao titleDao;

public void testLoadTitle() throws Exception {
Title title = this.titleDao.|oadTitle(new Long(10));
assertNot Nul | (title);

Finally, hereis an example using @esour ce for setter injection.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

/1 specifies the Spring configuration to load for this test fixture
@Cont ext Confi guration(l ocati ons={"daos.xm "})

public final class Hi bernateTitl eDaoTests {

// this instance will be dependency injected by nane
private HibernateTitl eDao titleDao;

@Resour ce

public void setTitleDao(Hi bernateTitleDao titleDao) {
this.titleDao = titl eDao;

}

public void testLoadTitle() throws Exception {
Title title = this.titleDao.|oadTitle(new Long(10));
assertNotNul | (title);

The above code listings use the same XML context file referenced by the @ont ext Conf i gur at i on annotation
(i.e., "daos. xm ") which looks like this:

Spring Framework (2.5.6) 209

Testing

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd" >

<I-- this bean will be injected into the HbernateTitleDaoTests cl ass -->

<bean id="titl eDao" class="com foo.dao. hi bernate. H bernateTitl eDao">
<property nanme="sessi onFactory" ref="sessionFactory"/>

</ bean>

<bean i d="sessi onFactory" class="org. springfranmework. orm hi bernat e3. Local Sessi onFact or yBean" >
<I-- dependencies elided for clarity -->
</ bean>

</ beans>

Note

If you are extending from a Spring-provided test base class that happens to use @ut owi r ed on one
of its setters methods, you might have multiple beans of the affected type defined in your
application context: e.g. multiple Dat aSour ce beans. In such a case, you may override the setter
and use the @ual i fi er annotation to indicate a specific target bean as follows:

@verride @\wutow red
public void setDataSource(@ualifier("mDataSource") DataSource dataSource) {
super . set Dat aSour ce(dat aSour ce) ;

}

The specified qualifier value indicates the specific bat aSour ce bean to inject, narrowing the set of
type matches to a specific bean. Its value is matched against <qual i fi er > declarations within the
corresponding <bean> definitions. The bean name is used as a fallback qualifier value, so you may
effectively also point to a specific bean by name there (as shown above, assuming that
"myDataSource” is the bean id). If there is only one Dat aSour ce bean to begin with, then the
qualifier will simply not have any effect - independent from the bean name of that single matching
bean.

Alternatively, consider using the @esource annotation on such an overridden setter methods,
defining the target bean name explicitly - with no type matching semantics. Note that this always
points to a bean with that specific name, no matter whether there is one or more beans of the given

type.

@verride @resource("myDat aSource")
public void set Dat aSour ce(Dat aSour ce dat aSource) {
super . set Dat aSour ce(dat aSour ce) ;

}

8.3.7.4. Transaction management

In the TestContext framework, transactions are managed by the Transacti onal Test Executi onlLi st ener,
which is configured via the @rest Executi onLi st eners annotation by default, even if you do not explicitly
declare @rest Execut i onLi st eners 0n your test class. To enable support for transactions, however, you must
provide a Pl at f or nilr ansact i onManager bean in the application context loaded via @ont ext Confi gurati on
semantics. In addition, you must declare @r ansact i onal either at the class or method level.

Spring Framework (2.5.6) 210

Testing

For class-level transaction configuration (i.e., setting the bean name for the transaction manager and the default
rollback flag), see the @ransacti onConfiguration entry in the TestContext framework annotation support
section.

There are severa options for configuring transactions for individual test methods. If transactions are not
enabled for the entire test class, methods may be explicitly annotated with @ ansactional . Similarly, if
transactions are enabled for the entire test class, methods may be explicitly flagged not to run within a
transaction by annotating them with @t Transacti onal . To control whether or not a transaction should
commit for a particular test method, you may use the @rol | back annotation to override the class-level default
rollback setting.

Note that Abst ract Transact i onal JUni t 38Spri ngCont ext Test s,
Abst ract Transacti onal JUni t 4Spri ngCont ext Test s, and
Abst ract Tr ansact i onal Test NGSpri ngCont ext Test s are pre-configured for transactional support at the class
level.

Y ou will occasionally find that you need to execute certain code before or after a transactional test method but
outside the transactional context, for example to verify the initial database state prior to execution of your test
or to verify expected transactional commit behavior after test execution (e.g., if the test was configured not to
roll back the transaction). Transacti onal Test Executi onLi st ener supports the @eforeTransaction and
@\ ter Transact i on annotations exactly for such scenarios. Simply annotate any publ i ¢ voi d method in your
test class with one of these annotations, and the Transact i onal Test Execut i onLi st ener Will ensure that your
before transaction method or after transaction method is executed at the appropriate time.
Tip

-

"9
Any before methods (e.g., methods annotated with JUnit 4's @Before) and any after methods (e.g.,

methods annotated with JUnit 4's @After) will be executed within a transaction. In addition,
methods annotated with @BeforeTransaction Or @fterTransacti on Will naturally not be
executed for tests annotated with @iot Tr ansact i onal .

The following JUnit 4 based example displays a fictitious integration testing scenario highlighting several of
the transaction-related annotations. Consult the TestContext framework annotation support section of the
reference manual for further information and configuration examples.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@Cont ext Confi guration

@ ansact i onConfi guration(transacti onvVanager="txMr", defaul t Rol | back=f al se)
@ransacti onal

public class FictitiousTransactional Test {

@Bef oreTransacti on
public void verifylnitial Dat abaseState() {

/Il logic to verify the initial state before a transaction is started
}

@efore
public void setUpTest DataWt hi nTransacti on() {
/] set up test data within the transaction

}
@est

/1 overrides the class-level defaultRollback setting
@Rol | back(true)
public void nodifyDat abaseW t hi nTransacti on() {
/1 1ogic which uses the test data and nodifi es database state

}

@\ ter
public void tear DownW t hi nTransacti on() {
/'l execute "tear down" logic within the transaction

Spring Framework (2.5.6) 211

Testing

}

@\fterTransaction
public void verifyFinal Dat abaseState() {

/!l logic to verify the final state after transaction has rolled back
}

@est

@\ot Tr ansact i onal

public void perfornmonDat abaseRel at edAction() {
/'l 1 ogic which does not nodify database state

}

8.3.7.5. TestContext support classes

8.3.7.5.1. JUnit 3.8 support classes

The org. spri ngf ramewor k. t est . cont ext . j uni t 38 package provides support classes for JUnit 3.8 based test
Cases.

* AbstractJUnit 38Spri ngCont ext Test s:

Abstract Test Case which integrates the Soring TestContext Framework with explicit Appl i cat i onCont ext
testing support in a JUnit 3.8 environment. When you extend the Abst ract JUni t 38Spri ngCont ext Test s
class you will have access to the following pr ot ect ed instance variables:

* applicationContext: use this to perform explicit bean lookups or to test the state of the context as a
whole.

* Abstract Transacti onal JUni t 38Spri ngCont ext Test s:

Abstract transactional extension of Abst ract JUni t 38Spri ngCont ext Test s that also adds some convenience
functionality for JIDBC access. Expects aj avax. sql . Dat aSour ce bean and a Pl at f or nilr ansact i onManager
bean to be defined in the ApplicationContext. When you extend the
Abstract Transact i onal JUni t 38Spri ngCont ext Tests class you will have access to the following
pr ot ect ed instance variables:

* applicationContext: inherited from the Abstract JUni t 38Spri ngCont ext Tests superclass. Use this to
perform explicit bean lookups or to test the state of the context as awhole.

* sinpl eJdbcTenpl at e: useful for querying to confirm state. For example, you might query before and after
testing application code that creates an object and persists it using an ORM tool, to verify that the data
appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) Y ou
will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the
f1 ush() method on Hibernate€'s sessi on interface.

8.3.7.5.2. JUnit 4.4 support classes

The org. spri ngframewor k. t est. cont ext . j uni t 4 package provides support classes for JUnit 4.4 based test
Cases.

® AbstractJUnit 4SpringCont ext Tests:

Abstract base test class which integrates the Spring TestContext Framework with explicit
Appl i cati onCont ext testing support in a JUnit 4.4 environment.

Spring Framework (2.5.6) 212

Testing

When you extend Abst ract JUni t 4Spri ngCont ext Test s you Wwill have access to the following pr ot ect ed
instance variables:

 applicationContext: use this to perform explicit bean lookups or to test the state of the context as a
whole.

Abstract Transacti onal JUni t 4Spri ngCont ext Test s:

Abstract transactional extension of Abst ract JUni t 4Spri ngCont ext Test s that also adds some convenience
functionality for JDBC access. Expects aj avax. sql . Dat aSour ce bean and a Pl at f or mTr ansact i onManager
bean to be defined in the Appl i cat i onCont ext .

When you extend Abstract Transactional JUni t 4SpringContext Tests you will have access to the
following pr ot ect ed instance variables:

 applicationContext: inherited from the Abstract JUni t 4Spri ngCont ext Tests superclass. Use this to
perform explicit bean lookups or to test the state of the context as awhole.

* sinpl eJdbcTenpl at e: useful for querying to confirm state. For example, you might query before and after
testing application code that creates an object and persists it using an ORM tool, to verify that the data
appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) Y ou
will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the
f1ush() method on Hibernate's Sessi on interface.

Tip

“a
These classes serve only as a convenience for extension. If you do not wish for your test classes to
be tied to a Spring-specific class hierarchy - for example, if you wish to directly extend the class
you are testing - you may configure your own custom test classes by using
@unW t h(SpringJuni t 4Cl assRunner. cl ass), @cont ext Confi gurati on,
@rest Execut i onLi st ener s, €tC.

8.3.7.5.3. Custom JUnit 4.4 Runner

The Soring TestContext Framework offers full integration with JUnit 4.4 via a custom runner. By annotating
test classes with @unwi t h(Spri ngJuni t 4d assRunner . cl ass) , developers can implement standard JUnit 4.4
unit and integration tests and simultaneously reap the benefits of the TestContext framework such as support
for loading application contexts, dependency injection of test instances, transactional test method execution,
etc. The following code listing displays the minimal requirements for configuring a test class to run with the
custom Spring Runner. Note that @est Execut i onLi st ener s has been configured with an empty list in order to
disable the default listeners, which would otherwise require that an Appl i cati onCont ext be configured via
@cont ext Confi gurati on.

@unW t h(Spri ngJUni t 4Cl assRunner. cl ass)
@est Executi onLi steners({})
public class SinpleTest {

@est

public void testMethod() {
/'l execute test logic...
}

8.3.7.5.4. TestNG support classes

Spring Framework (2.5.6) 213

Testing

The org. spri ngfranmework. t est. cont ext. testng package provides support classes for TestNG based test
cases.

* Abstract Test NGSpri ngCont ext Test s.

Abstract base test class which integrates the Spring TestContext Framework with explicit
Appl i cati onCont ext testing support in a TestNG environment.

When you extend Abst r act Test NGSpr i ngCont ext Test's you will have access to the following pr ot ect ed
instance variables:

* applicationContext: use this to perform explicit bean lookups or to test the state of the context as a
whole.

* Abstract Transacti onal Test NGSpri ngCont ext Test s:

Abstract transactional extension of Abstract Test NGSpri ngCont ext Tests that adds some convenience
functionality for JDBC access. Expects aj avax. sql . Dat aSour ce bean and a Pl at f or nilr ansact i onManager
bean to be defined in the Appl i cat i onCont ext .

When you extend Abstract Transacti onal Test NGSpri ngCont ext Tests you will have access to the
following pr ot ect ed instance variables:

e applicationContext: inherited from the Abstract Test NGSpri ngCont ext Test s superclass. Use this to
perform explicit bean lookups or to test the state of the context asawhole.

 sinpl eJdbcTenpl at e: useful for querying to confirm state. For example, you might query before and after
testing application code that creates an object and persists it using an ORM tool, to verify that the data
appears in the database. (Spring will ensure that the query runs in the scope of the same transaction.) You
will need to tell your ORM tool to 'flush' its changes for this to work correctly, for example using the
f1 ush() method on Hibernate's Sessi on interface.

Tip

"9
These classes serve only as a convenience for extension. If you do not wish for your test classes to
be tied to a Spring-specific class hierarchy - for example, if you wish to directly extend the class

you are testing - you may configure your own custom test classes by using
@ont ext Confi guration, @estExecutionListeners, etc. and by manually instrumenting your
test class with a Test Cont ext Manager . See the source code of

Abst r act Test NGSpr i ngCont ext Test s for an example of how to instrument your test class.

8.3.7.6. TestContext framework annotation support

The Spring TestContext Framework supports all annotations as outlined in the common annotations section.
The following annotations, however, are only supported when used in conjunction with Junit (e.g., with the
SoringJUnit4ClassRunner or the JUnit 3.8 and JUnit 4.4 support classes.

e @fProfil eVal ue
e @rofil eVal ueSourceConfiguration

* @xpect edException

Spring Framework (2.5.6) 214

Testing

Using Spring's @xpect edException annotation in conjunction with JUnit 4's @rest (expected=...)
configuration would lead to an unresolvable conflict. Developers must therefore choose one or the other
when integrating with JUnit 4, in which case it is generadly preferable to use the explicit JUnit 4
configuration.

e @i ned

Spring's @i med annotation has different semantics than JUnit 4's @est (ti neout =. . .) support. Specificaly,
due to the manner in which JUnit 4 handles test execution timeouts (i.e., by executing the test method in a
separate Thr ead), @est (ti meout=...) appliesto each iteration in the case of repetitions and preemptively
fails the test if the test takes too long. Spring's @i ned, on the other hand, times the total test execution time
(including al repetitions) and does not preemptively fail the test but rather waits for the test to actualy
complete before failing.

* @Repeat

The following non-test-specific annotations are also supported by the Spring TestContext Framework with their
standard semantics.

* @\wutowired

e @ualifier

e @resour ce (javax.annotation) if JSR-250 is present

e @ersistenceCont ext (javax.persistence) if JPAis present

e @ersistencelnit (javax.persistence) if JPA is present

* @Required

* @ransacti onal

The following list includes all annotations specific to the Spring TestContext Framework. Refer to the
respective JavaDoc for further information, including default attribute values, etc.

* @ont ext Configuration

Defines class-level metadata which is used to determine how to load and configure an Appl i cat i onCont ext .
Specifically, @ContextConfiguration defines the application context resource | ocat i ons to load as well as
the Cont ext Loader strategy to use for loading the context.

@Cont ext Confi guration(l ocati ons={"exanpl e/test-context.xm "}, | oader=CustonCont ext Loader. cl ass)
public class CustonConfiguredApplicationContextTests {

/1 class body. ..
}

Note: @ont ext Conf i gurati on provides support for inherited resource locations by default. See the Context
management and caching section and JavaDoc for an example and further details.

® @est ExecutionLi steners

Defines class-level metadata for configuring which Test Execut i onLi st ener s should be registered with a
Test Cont ext Manager. Typically, @restExecutionListeners Wwill be used in conjunction with

Spring Framework (2.5.6) 215

Testing

@Cont ext Confi gurati on.

@Cont ext Confi guration
@est Execut i onLi st ener s({ Cust onTest Execut i onLi st ener. cl ass, Anot her Test Execut i onLi st ener. cl ass})
public class Custonilest Executi onLi stener Tests {
/1 class body. ..
}

Note: @est Executi onLi st ener s provides support for inherited listeners by default. See the JavaDoc for an
example and further details.

® @ransacti onConfiguration

Defines class-level metadata for configuring transactional tests. Specifically, the bean name of the
Pl at f or niTr ansact i onManager that isto be used to drive transactions can be explicitly configured if the bean
name of the desired PlatformTransactionManager is not "transactionManager. In addition, the
def aul t Rol | back flag can optionally be changed to f al se. Typically, @r ansacti onConfi gurati on will be
used in conjunction with @ont ext Confi gurati on.

@Cont ext Confi guration
@ransacti onConfiguration(transacti onManager="txMyr", defaultRol | back=fal se)
public cl ass CustonConfiguredTransactional Tests {
/'l class body...
}

* @BeforeTransaction

Indicates that the annotated publ i ¢ voi d method should be executed before a transaction is started for test
methods configured to run within atransaction viathe @r ansact i onal annotation.

@Bef oreTr ansact i on
public void beforeTransaction() {

/1 logic to be executed before a transaction is started
}

e @\fterTransaction

Indicates that the annotated publ i ¢ voi d method should be executed after a transaction has been ended for
test methods configured to run within atransaction viathe @r ansact i onal annotation.

@\fterTransacti on
public void afterTransaction() {

/1 logic to be executed after a transaction has ended
}

8.3.8. PetClinic example

The PetClinic sample application included with the full Spring distribution illustrates several features of the
Soring TestContext Framework in a JUnit 4.4 environment. Most test functionality is included in the
Abstract d i ni cTest s, for which apartial listing is shown below:

@Cont ext Conf i guration
public abstract class AbstractC inicTests extends Abstract Transacti onal JUnit 4Spri ngCont ext Tests {

@\ut owi r ed
protected Cinic clinic;

@est
public void getVets() {

Spring Framework (2.5.6) 216

Testing

Col I ection<Vet> vets = this.clinic.getVets();

assert Equal s("JDBC query must show t he same nunber of vets",
super . count Rowsl nTabl e("VETS"), vets.size());

Vet vl = EntityUtils.getByld(vets, Vet.class, 2);

assert Equal s("Leary", vl.getLastNanme());

assert Equal s(1, v1.getNrOf Specialties());

assert Equal s("radi ol ogy", (v1.getSpecialties().get(0)).getNanme());

...

...

Notes:

* Thistest case extends the Abst ract Transact i onal JUni t 4Spri ngCont ext Test s class, from which it inherits
configuration for Dependency Injection (via the Dependencyl njectionTest Executi onLi stener) and
transactional behavior (viathe Transact i onal Test Execut i onLi st ener).

e The clinic instance variable - the application object being tested - is set by Dependency Injection via
@ut owi r ed semantics.

e Thetest Get Vet s() method illustrates how the inherited count RowsI nTabl e() method can be used to easily
verify the number of rows in a given table, thus testing correct behavior of the application code being tested.
This alows for stronger tests and lessens dependency on the exact test data. For example, you can add
additional rows in the database without breaking tests.

» Like many integration tests using a database, most of the tests in AbstractdinicTests depend on a
minimum amount of data already in the database before the test cases run. Y ou might, however, choose to
populate the database in your test cases also - again, within the same transaction.

The PetClinic application supports three data access technologies - JDBC, Hibernate, and JPA. By declaring
@ont ext Confi gurati on Without any specific resource locations, the Abst ract d i ni cTest s class will have its
application context loaded from the default location, " Abst ract O i ni cTest s- cont ext . xni ", which declares a
common DataSource. Subclasses specify additional context locations which must declare a
Pl at f or nilr ansact i onManager and a concrete implementation of d i ni c.

For example, the Hibernate implementation of the PetClinic tests contains the following implementation. Note
that for this example, Hi ber nat ed i ni cTests does not contain a single line of code: we only need to declare
@ontext Configuration, and the tests are inherited from AbstractdinicTests. Since
@ont ext Configuration is declared without any specific resource locations, the Spring TestContext
Framework will load an application context from all the beans defined in
“Abstract dini cTests-context.xm " (i.e, the inherited locations) and
“Hi bernat eC i ni cTests-context.xm ", With "Hi bernated ini cTests-context.xm " possibly overriding
beans defined in " Abstract i ni cTests-context. xm ",

@Cont ext Confi guration
public class H bernatedinicTests extends AbstractCinicTests { }

Asyou can see in the PetClinic application, the Spring configuration is split across multiple files. Asis typical
of large scale applications, configuration locations will often be specified in a common base class for all
application-specific integration tests. Such a base class may also add useful instance variables - populated by
Dependency Injection, naturally - such as aHi ber nat eTenpl at e, in the case of an application using Hibernate.

As far as possible, you should have exactly the same Spring configuration files in your integration tests as in
the deployed environment. One likely point of difference concerns database connection pooling and transaction
infrastructure. If you are deploying to a full-blown application server, you will probably use its connection pool

Spring Framework (2.5.6) 217

Testing

(available through JNDI) and JTA implementation. Thus in production you will use a Jndi oj ect Fact or yBean
for the Dat aSource and Jt aTransacti onManager. JNDI and JTA will not be available in out-of-container
integration tests, so you should use a combination like the Commons DBCP Basi cDat aSource and
Dat aSour ceTr ansact i onManager OF Hi ber nat eTr ansact i onManager for them. You can factor out this variant
behavior into a single XML file, having the choice between application server and 'local’ configuration
separated from all other configuration, which will not vary between the test and production environments. In
addition, it is advisable to use properties files for connection settings: see the PetClinic application for an
example.

8.4. Further Resources

This section contains links to further resources about testing in general .

« The JUnit homepage. The Spring Framework's unit test suite is written using JUnit 3.8 as the testing
framework.

e The TestNG homepage. TestNG is atesting framework inspired by JUnit 3.8 with added support for Java 5
annotations, test groups, data-driven testing, distributed testing, etc.

« The Mock Objects homepage. About Mock Objects, a technique for improving the design of code within
Test-Driven Devel opment.

* "Mock Objects' article at Wikipedia

» The EasyMock homepage. The Spring Framework uses EasyMock extensively in itstest suite.

* The JMock homepage. JMock is a library that supports test-driven development of Java code with mock
objects.

* The DbUnit homepage. DbUnit is a JUnit extension (also usable with Ant) targeted for database-driven
projects that, among other things, puts your database into a known state between test runs.

» The Grinder homepage. The Grinder is a Java load-testing framework.

Spring Framework (2.5.6) 218

http://www.junit.org/
http://testng.org/
http://www.mockobjects.com/
http://en.wikipedia.org/wiki/Mock_Object
http://www.easymock.org/
http://www.jmock.org/
http://dbunit.sourceforge.net/
http://grinder.sourceforge.net/

Part Il. Middle Tier Data Access

This part of the reference documentation is concerned with the middle tier, and specifically the data access
responsibilities of said tier.

Spring's comprehensive transaction management support is covered in some detail, followed by thorough
coverage of the various middle tier data access frameworks and technologies that the Spring Framework
integrates with.

Chapter 9, Transaction management

Chapter 10, DAO support

Chapter 11, Data access using JDBC

Chapter 12, Object Relational Mapping (ORM) data access

Spring Framework (2.5.6) 219

Chapter 9. Transaction management

9.1. Introduction

One of the most compelling reasons to use the Spring Framework is the comprehensive transaction support.
The Spring Framework provides a consistent abstraction for transaction management that delivers the following
benefits:

« Provides a consistent programming model across different transaction APIs such as JTA, JDBC, Hibernate,
JPA, and JDO.

* Supports declarative transaction management.

* Provides a simpler API for programmatic transaction management than a number of complex transaction
APlIssuch as JTA.

 Integrates very well with Spring's various data access abstractions.

This chapter is divided up into a number of sections, each detailing one of the value-adds or technol ogies of the
Spring Framework's transaction support. The chapter closes up with some discussion of best practices
surrounding transaction management (for example, choosing between declarative and programmatic transaction
management).

e The first section, entitled Motivations, describes why one would want to use the Spring Framework's
transaction abstraction as opposed to EJB CMT or driving transactions via a proprietary APl such as
Hibernate.

» The second section, entitled Key abstractions outlines the core classes in the Spring Framework's transaction
support, aswell as how to configure and obtain Dat aSour ce instances from a variety of sources.

* The third section, entitled Declarative transaction management, covers the Spring Framework's support for
declarative transaction management.

« The fourth section, entitled Programmatic transaction management, covers the Spring Framework's support
for programmatic (that is, explicitly coded) transaction management.

9.2. Motivations

Is an application server needed for transaction management?

The Spring Framework's transaction management support significantly changes traditional thinking as to
when a J2EE application requires an application server.

In particular, you don't need an application server just to have declarative transactions via EJB. In fact,
even if you have an application server with powerful JTA capabilities, you may well decide that the
Spring Framework's declarative transactions offer more power and a much more productive programming
model than EJB CMT.

Typically you need an application server's JTA capability only if you need to enlist multiple transactional

Spring Framework (2.5.6) 220

Transaction management

resources, and for many applications being able to handle transactions across multiple resources isn't a
requirement. For example, many high-end applications use a single, highly scalable database (such as
Oracle 9i RAC). Standaone transaction managers such as Atomikos Transactions and JOTM are other
options. (Of course you may need other application server capabilities such as IMS and JCA.)

The most important point is that with the Spring Framework you can choose when to scale your
application up to a full-blown application server. Gone are the days when the only alternative to using
EJB CMT or JTA was to write code using local transactions such as those on JDBC connections, and face
a hefty rework if you ever needed that code to run within global, container-managed transactions. With
the Spring Framewaork, only configuration needs to change so that your code doesn't have to.

Traditionally, J2EE devel opers have had two choices for transaction management: global or local transactions.
Global transactions are managed by the application server, using the Java Transaction APl (JTA). Local
transactions are resource-specific: the most common example would be a transaction associated with a JDBC
connection. This choice has profound implications. For instance, global transactions provide the ability to work
with multiple transactional resources (typically relational databases and message queues). With local
transactions, the application server is not involved in transaction management and cannot help ensure
correctness across multiple resources. (It is worth noting that most applications use a single transaction
resource.)

Global Transactions. Global transactions have a significant downside, in that code needsto use JTA, and JTA
is a cumbersome API to use (partly due to its exception model). Furthermore, a JTA User Transacti on
normally needs to be sourced from JNDI: meaning that we need to use both JNDI and JTA to use JTA.
Obviously all use of global transactions limits the reusability of application code, as JTA is normally only
available in an application server environment. Previoudly, the preferred way to use global transactions was via
EJB CMT (Container Managed Transaction): CMT is a form of declarative transaction management (as
distinguished from programmatic transaction management). EJB CMT removes the need for
transaction-related JNDI lookups - athough of course the use of EJB itself necessitates the use of JNDI. It
removes most of the need (although not entirely) to write Java code to contral transactions. The significant
downside is that CMT istied to JTA and an application server environment. Also, it is only available if one
chooses to implement business logic in EJBs, or at least behind a transactional EJB facade. The negatives
around EJB in general are so great that thisis not an attractive proposition, especialy in the face of compelling
aternatives for declarative transaction management.

Local Transactions. Local transactions may be easier to use, but have significant disadvantages. they cannot
work across multiple transactional resources. For example, code that manages transactions using a JDBC
connection cannot run within a global JTA transaction. Another downside is that local transactions tend to be
invasive to the programming model.

Spring resolves these problems. It enables application devel opers to use a consistent programming model in any
environment. Y ou write your code once, and it can benefit from different transaction management strategies in
different environments. The Spring Framework provides both declarative and programmatic transaction
management. Declarative transaction management is preferred by most users, and is recommended in most
Cases.

With programmatic transaction management, developers work with the Spring Framework transaction
abstraction, which can run over any underlying transaction infrastructure. With the preferred declarative model,
developers typically write little or no code related to transaction management, and hence don't depend on the
Spring Framework's transaction API (or indeed on any other transaction AP!).

Spring Framework (2.5.6) 221

http://www.atomikos.com/
http://jotm.objectweb.org/

Transaction management

9.3. Key abstractions

The key to the Spring transaction abstraction is the notion of a transaction strategy. A transaction strategy is
defined by the or g. spri ngf ramewor k. t ransact i on. Pl at f or nilr ansact i onManager interface, shown below:

public interface Platfornilransacti onManager {

Transacti onSt at us get Transacti on(Transacti onDefiniti on definition)
throws Transacti onExcepti on;

void comm t(TransactionStatus status) throws Transacti onExcepti on;

voi d rol | back(TransactionStatus status) throws Transacti onExcepti on;

}

This is primarily an SPI interface, athough it can be used programmatically. Note that in keeping with the
Spring Framework's philosophy, PI at f or nilr ansact i onManager is an interface, and can thus be easily mocked
or stubbed as necessary. Nor is it tied to a lookup strategy such as JNDI: Pl at f or nilr ansact i onManager
implementations are defined like any other object (or bean) in the Spring Framework's [oC container. This
benefit alone makes it a worthwhile abstraction even when working with JTA: transactional code can be tested
much more easily than if it used JTA directly.

Again in keeping with Spring's philosophy, the Transacti onException that can be thrown by any of the
Pl at f or niTr ansact i onvanager interface's methods is unchecked (that is it extends the
java. | ang. Runti meException class). Transaction infrastructure failures are almost invariably fatal. In rare
cases where application code can actually recover from atransaction failure, the application developer can till
choose to catch and handle Tr ansact i onExcept i on. The salient point is that developers are not forced to do so.

The getTransaction(..) method returns a TransactionStatus oObject, depending on a
TransactionDefinition parameter. The returned TransactionStatus might represent a new or existing
transaction (if there were a matching transaction in the current call stack - with the implication being that (as
with J2EE transaction contexts) a Tr ansact i onSt at us iS associated with athread of execution).

The Transacti onDef i ni ti on interface specifies:

« |solation: the degree of isolation this transaction has from the work of other transactions. For example, can
this transaction see uncommitted writes from other transactions?

» Propagation: normally all code executed within a transaction scope will run in that transaction. However,
there are several options specifying behavior if atransactional method is executed when a transaction context
aready exists. for example, simply continue running in the existing transaction (the common case); or
suspending the existing transaction and creating a new transaction. Soring offers all of the transaction
propagation options familiar from EJB CMT. (Some details regarding the semantics of transaction
propagation in Spring can be found in the section entitled Section 9.5.7, “ Transaction propagation”.

« Timeout: how long this transaction may run before timing out (and automatically being rolled back by the
underlying transaction infrastructure).

* Read-only status: aread-only transaction does not modify any data. Read-only transactions can be a useful
optimization in some cases (such as when using Hibernate).

These settings reflect standard transactional concepts. If necessary, please refer to a resource discussing
transaction isolation levels and other core transaction concepts because understanding such core concepts is
essential to using the Spring Framework or indeed any other transaction management solution.

Spring Framework (2.5.6) 222

Transaction management

The Transact i onSt at us interface provides a simple way for transactional code to control transaction execution
and query transaction status. The concepts should be familiar, asthey are common to all transaction APIs:

public interface TransactionStatus {
bool ean i sNewTransaction();
voi d setRol | backOnl y();

bool ean i sRol | backOnl y();
}

Regardless of whether you opt for declarative or programmatic transaction management in Spring, defining the
correct Pl at f or nilr ansact i onManager implementation is absolutely essential. In good Spring fashion, this
important definition typically is made using via Dependency |njection.

Pl at f or niTr ansact i onManager implementations normally require knowledge of the environment in which they
work: JDBC, JTA, Hibernate, etc The following examples from the dat aAccessCont ext -1 ocal . xm file from
Spring's j Pet Stor e sample application show how alocal Pl at f or nilr ansact i onManager implementation can be
defined. (Thiswill work with plain JDBC.)

We must define a JDBC Dat aSour ce, and then use the Spring Dat aSour ceTr ansact i onManager, giving it a
reference to the Dat aSour ce.

<bean i d="dat aSource" cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" destroy- net hod="cl ose" >
<property nanme="driverC assNane" val ue="${j dbc. driverC assNane}" />
<property nanme="url" val ue="${jdbc.url}" />
<property nanme="usernane" val ue="${j dbc. usernane}" />
<property nanme="password" val ue="${j dbc. password}" />
</ bean>

Therelated Pl at f or nir ansact i onManager bean definition will look like this:

<bean i d="t xManager" cl ass="org. springframework.j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >
<property name="dat aSource" ref="dataSource"/>
</ bean>

If we use JTA in a J2EE container, as in the ' dat aAccessContext-jta.xm ' file from the same sample
application, we use a container DataSource, Obtained via JNDI, in conjunction with Spring's
JtaTransact i onManager. The JtaTransacti onManager doesn't need to know about the Dat aSource, Or any
other specific resources, asit will use the container's global transaction management infrastructure.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns:jee="http://ww. springframework. org/ schena/j ee"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 2. 5. xs
htt p: // ww. spri ngf ranewor k. or g/ schena/ j ee http://ww. springfranework. org/ schena/jee/ spring-jee-2.5. xsd">

<j ee:jndi -1 ookup id="dataSource" jndi-nanme="jdbc/jpetstore"/>

<bean i d="t xManager" class="org.springfranmework.transaction.jta.JtaTransacti onManager" />

<l-- other <bean/> definitions here -->
</ beans>
Note

The above definition of the ' dat aSource' bean uses the <j ndi -1 ookup/ > tag from the ' j ee’

Spring Framework (2.5.6) 223

Transaction management

namespace. For more information on schemabased configuration, see Appendix A, XML
Schema-based configuration, and for more information on the <j ee/ > tags see the section entitled
Section A.2.3, “Thej ee schema’.

We can aso use Hibernate local transactions easily, as shown in the following examples from the Spring
Framework's PetClinic sample application. In this case, we need to define a Hibernate
Local Sessi onFact or yBean, Which application code will use to obtain Hibernate Sessi on instances.

The Dat aSour ce bean definition will be similar to the one shown previously (and thus is not shown). If the
Dat aSour ce IS managed by the JEE container it should be non-transactional as the Spring Framework, rather
than the JEE container, will manage transactions.

The ' t xManager’ bean in this case is of the Hi ber nat eTr ansact i onManager type. In the same way as the
Dat aSour ceTr ansact i onManager needs a reference to the Dat aSour ce, the Hi ber nat eTr ansact i onManager
needs areference to the Sessi onFact ory.

<bean i d="sessi onFactory" cl ass="org. spri ngframework. orm hi bernat e3. Local Sessi onFact or yBean" >
<property name="dat aSource" ref="dataSource" />
<property name="nmappi ngResour ces" >
<list>
<val ue>or g/ spri ngf ramewor k/ sanpl es/ pet cl i ni c/ hi ber nat e/ pet cl i ni c. hbm xm </ val ue>
</list>
</ property>
<property nanme="hi bernat eProperties">
<val ue>
hi ber nat e. di al ect =${ hi ber nat e. di al ect }
</val ue>
</ property>
</ bean>

<bean i d="t xManager" cl ass="org. spri ngfranmework. orm hi bernat e3. Hi ber nat eTransact i onManager " >
<property name="sessi onFactory" ref="sessionFactory" />
</ bean>

With Hibernate and JTA transactions, we can simply use the Jt aTransact i onvanager as with JDBC or any
other resource strategy.

<bean id="txManager" class="org. springframework.transaction.jta.JtaTransacti onManager"/>

Note that this is identical to JTA configuration for any resource, as these are global transactions, which can
enlist any transactional resource.

In all these cases, application code will not need to change at all. We can change how transactions are
managed merely by changing configuration, even if that change means moving from local to global
transactions or vice versa.

9.4. Resource synchronization with transactions

It should now be clear how different transaction managers are created, and how they are linked to related
resources which need to be synchronized to transactions (for example Dat aSour ceTr ansact i onManager t0 a
JDBC Dat aSour ce, Hibernat eTransacti onManager t0 a Hibernate Sessi onFactory, and so forth). There
remains the question however of how the application code, directly or indirectly using a persistence APl (such
as JDBC, Hibernate, and JDO), ensures that these resources are obtained and handled properly in terms of
proper creation/reuse/cleanup and trigger (optionally) transaction synchronization via the relevant
Pl at f or nTTr ansact i onManager .

Spring Framework (2.5.6) 224

Transaction management

9.4.1. High-level approach

The preferred approach is to use Spring's highest level persistence integration APIs. These do not replace the
native APIs, but internally handle resource creation/reuse, cleanup, optional transaction synchronization of the
resources and exception mapping so that user data access code doesn't have to worry about these concerns at
all, but can concentrate purely on non-boilerplate persistence logic. Generally, the same template approach is
used for al persistence APIs, with examples including the JdbcTenpl ate, HibernateTenplate, and
JdoTenpl at e classes (detailed in subsequent chapters of this reference documentation.

9.4.2. Low-level approach

At a lower level exist classes such as Dat aSourceltils (for JDBC), SessionFactoryUtils (for Hibernate),
Per si st enceManager FactoryUtils (for JDO), and so on. When it is preferable for application code to deal
directly with the resource types of the native persistence APIs, these classes ensure that proper Spring
Framework-managed instances are obtained, transactions are (optionally) synchronized, and exceptions which
happen in the process are properly mapped to a consistent API.

For example, in the case of JDBC, instead of the traditional JDBC approach of calling the get Connecti on()
method on the Dat aSour ce, you would instead use Spring's
org. springframewor k. j dbc. dat asour ce. Dat aSourcelti | s classasfollows:

Connection conn = DataSourceltils. get Connecti on(dat aSource);

If an existing transaction exists, and already has a connection synchronized (linked) to it, that instance will be
returned. Otherwise, the method call will trigger the creation of a new connection, which will be (optionally)
synchronized to any existing transaction, and made available for subsequent reuse in that same transaction. As
mentioned, this has the added advantage that any SQ.Exception will be wrapped in a Spring Framework
Cannot Get JdbcConnecti onException - one of the Spring Framework's hierarchy of unchecked
DataAccessExceptions. This gives you more information than can easily be obtained from the sQLExcept i on,
and ensures portability across databases: even across different persistence technologies.

It should be noted that this will aso work fine without Spring transaction management (transaction
synchronization is optional), so you can use it whether or not you are using Spring for transaction management.

Of course, once you've used Spring's JDBC support or Hibernate support, you will generally prefer not to use
Dat aSourceltils or the other helper classes, because you'll be much happier working via the Spring
abstraction than directly with the relevant APls. For example, if you use the Spring JdbcTenpl ate oOr
j dbc. obj ect package to simplify your use of JDBC, correct connection retrieval happens behind the scenes
and you won't need to write any special code.

9.4.3. Transact i onAwar eDat aSour cePr oxy

At the very lowest level exists the Transacti onAwar eDat aSour ceProxy class. This is a proxy for a target
Dat aSour ce, Which wraps the target Dat aSource to add awareness of Spring-managed transactions. In this
respect, it is similar to atransactional JNDI Dat aSour ce as provided by a J2EE server.

It should almost never be necessary or desirable to use this class, except when existing code exists which must
be called and passed a standard JDBC Dat aSour ce interface implementation. In that case, it's possible to still
have this code be usable, but participating in Spring managed transactions. It is preferable to write your new
code using the higher level abstractions mentioned above.

Spring Framework (2.5.6) 225

Transaction management

9.5. Declarative transaction management

Most users of the Spring Framework choose declarative transaction management. It is the option with the least
impact on application code, and hence is most consistent with the ideals of a non-invasive lightweight
container.

The Spring Framework's declarative transaction management is made possible with Spring AOP, although, as
the transactional aspects code comes with the Spring Framework distribution and may be used in a boilerplate
fashion, AOP concepts do not generally have to be understood to make effective use of this code.

It may be helpful to begin by considering EJB CMT and explaining the similarities and differences with the
Spring Framework's declarative transaction management. The basic approach is similar: it is possible to specify
transaction behavior (or lack of it) down to individual method level. It is possible to make a
set Rol | backonl y() call within atransaction context if necessary. The differences are:

e Unlike EJB CMT, which istied to JTA, the Spring Framework's declarative transaction management works
in any environment. It can work with JDBC, JDO, Hibernate or other transactions under the covers, with
configuration changes only.

« The Spring Framework enables declarative tr